首页> 外文会议>AIAA space forum >Design and Development of a Methane Cryogenic Propulsion Stage for Human Mars Exploration
【24h】

Design and Development of a Methane Cryogenic Propulsion Stage for Human Mars Exploration

机译:用于人类火星探测的甲烷低温推进级的设计与开发

获取原文

摘要

NASA is currently working on the Evolvabe Mars Campaign (EMC) study to outline transportation and mission options for human exploration of Mars. One of the key aspects of the EMC is leveraging current and planned near-term technology investments to build an affordable and evolvable approach to Mars exploration. This leveraging of investments includes the use of high-power Solar Electric Propulsion (SEP) systems evolved from those currently under development in support of the Asteroid Redirect Mission to deliver payloads to Mars. The EMC is considering several transportation options that combine solar electric and chemical propulsion technologies to deliver crew and cargo to Mars. In one primary architecture option, the SEP propulsion system is used to pre-deploy mission elements to Mars while a high-thrust chemical propulsion system is used to send crew on faster ballistic transfers between Earth and Mars. This high-thrust chemical system uses liquid oxygen - liquid methane main propulsion and reaction control systems integrated into the Methane Cryogenic Propulsion Stage (MCPS). Over the past year, there have been several studies completed to provide critical design and development information related to the MCPS. This paper is intended to provide a summary of these efforts. A summary of the current point of departure design for the MCPS is provided as well as an overview of the mission architecture and concept of operations that the MCPS is intended to support. To leverage the capabilities of solar electric propulsion to the greatest extent possible, the EMC architecture pre-deploys the required stages for returning crew from Mars. While this changes the risk posture of the architecture, it provides mass savings by using higher-efficiency systems for interplanetary transfer. However, this does introduce significantly longer flight times to Mars which, in turn, increases the overall lifetime of the stages to as long as 3000 days. This unique aspect to the concept of operations introduces several challenges, specifically related to propellant storage and engine reliability. These challenges and some potential solutions are discussed. Specific focus is provided on two key technology areas; propulsion and cryogenic fluid management. In the area of propulsion development, the development of an integrated methane propulsion system that combines both main propulsion and reaction control is discussed. This includes an overview of potential development paths, areas where development for Mars applications are complementary to development efforts underway in other parts of the aerospace industry, and commonality between the MCPS methane propulsion applications and other Mars elements, including the Mars lander systems. This commonality is a key affordability aspect of the Evolvable Mars Campaign. A similar discussion is provided for cryogenic fluid management technologies including a discussion of how using cryo propulsion in the Mars transportation application not only provides performance benefits but also leverages decades of technology development investments made by NASA and its aerospace contractor community.
机译:NASA目前正在进行Evolvabe火星战役(EMC)研究,以概述人类探索火星的运输和任务选择。 EMC的关键方面之一是利用当前和计划中的近期技术投资来构建一种可负担且可发展的火星探测方法。这种投资杠杆作用包括使用大功率太阳能推进系统(SEP),该系统是从目前正在开发的系统演变而来的,以支持将小行星重定向任务运送到火星的有效载荷。 EMC正在考虑将太阳能和化学推进技术相结合的几种运输方式,以将机组人员和货物运送到火星。在一个主要的体系结构选项中,SEP推进系统用于将任务要素预先部署到火星,而高推力化学推进系统用于使机组人员在地球与火星之间进行更快的弹道转移。该高推力化学系统使用液氧-液甲烷的主推进和反应控制系统,该系统集成在甲烷低温推进级(MCPS)中。在过去的一年中,已经完成了几项研究,以提供与MCPS相关的关键设计和开发信息。本文旨在总结这些工作。提供了MCPS当前出发点设计的摘要,并概述了MCPS打算支持的任务架构和作战概念。为了最大程度地利用太阳能发电的能力,EMC体系结构预先部署了从火星返回机组所需的阶段。虽然这改变了架构的风险状态,但通过使用效率更高的系统进行星际转移,可以节省大量的重量。但是,这确实会导致到火星的飞行时间大大延长,从而将这些级的总寿命延长到长达3000天。操作概念的这一独特方面带来了一些挑战,特别是与推进剂存储和发动机可靠性有关。这些挑战和一些潜在的解决方案进行了讨论。具体重点放在两个关键技术领域;推进和低温液体管理。在推进发展领域,讨论了将主推进和反应控制相结合的集成甲烷推进系统的开发。其中概述了潜在的发展道路,火星应用的开发与航空航天工业其他领域正在进行的开发工作相辅相成的领域,以及MCPS甲烷推进应用与其他火星要素(包括火星着陆器系统)之间的共性。这种共同性是“进化的火星”战役的主要负担能力方面。针对低温流体管理技术提供了类似的讨论,包括讨论了如何在火星运输应用中使用低温推进技术不仅带来性能优势,而且还利用了美国宇航局及其航空航天承包商社区数十年来的技术开发投资。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号