首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >IMPACT OF SWIRLING FLOW STRUCTURE ON SHEAR LAYER VORTICITY FLUCTUATION MECHANISMS
【24h】

IMPACT OF SWIRLING FLOW STRUCTURE ON SHEAR LAYER VORTICITY FLUCTUATION MECHANISMS

机译:旋流结构对剪切层涡度波动机制的影响

获取原文

摘要

Vorticity fluctuations have been identified as an important coupling mechanism during velocity-coupled combustion instability in swirl-stabilized flames. Acoustic oscillations in the combustor can cause all components of vorticity to oscillate, particularly the cross-stream, or azimuthal, vorticity that is excited in shear layer roll-up, and streamwise, or axial, vorticity that is excited during swirl fluctuations. These fluctuations can be induced by longitudinal acoustic fluctuations that oscillate across the swirler and dump plane upstream of the flame. While these fluctuations have been identified in a number of configurations, the sensitivity of this mechanism to flow configuration and boundary conditions has not been studied parametrically. In this study, we investigate the impact of time-averaged swirl level, confinement, and forcing frequency and amplitude on vorticity fluctuation dynamics in the azimuthal direction of a non-reacting swirling jet. The goal of this work is to better understand the dependence of vorticity fluctuations on these parameters as well as the vorticity conversion processes that occur in the flow. We have shown that vorticity fluctuation levels vary with time-averaged swirl number, particularly in the presence of a self-excited precessing vortex core, which dampens most acoustically-driven motion. Additionally, variations in forcing frequency excite flow response in different portions of the flow, particularly for different swirl numbers. Finally, confinement drastically changes the flow topology and unforced dynamics, resulting in significantly different response to forcing and generation of vortical fluctuations.
机译:在涡旋稳定火焰中,速度波动燃烧不稳定性期间,涡度波动已被认为是重要的耦合机制。燃烧室中的声波振荡会引起涡旋的所有分量振荡,特别是在剪切层卷起时激发的横流涡旋或方位涡旋,以及在涡旋波动过程中被激发的沿流涡旋或轴向涡旋。这些波动可能是由纵向声波波动引起的,该声波在旋流器和火焰上游的泄油平面上振荡。尽管已在许多配置中确定了这些波动,但尚未通过参数研究此机制对流动配置和边界条件的敏感性。在这项研究中,我们研究了时间平均旋流水平,限制以及强迫频率和幅度对非反应旋流的方位角方向上旋涡波动动力学的影响。这项工作的目的是更好地理解涡度波动对这些参数的依赖性以及在流动中发生的涡度转换过程。我们已经证明,涡度波动水平随时间平均旋涡数而变化,特别是在存在自激进动旋涡芯的情况下,该涡旋芯会抑制大多数声学驱动的运动。另外,强迫频率的变化激发了流动的不同部分的流动响应,特别是对于不同的旋流数。最后,限制会极大地改变流动拓扑和非强迫动力学,从而导致对强迫和涡旋波动产生明显不同的响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号