首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >IMPACT OF SWIRLING FLOW STRUCTURE ON SHEAR LAYER VORTICITY FLUCTUATION MECHANISMS
【24h】

IMPACT OF SWIRLING FLOW STRUCTURE ON SHEAR LAYER VORTICITY FLUCTUATION MECHANISMS

机译:旋流流动结构对剪切层涡旋波动机制的影响

获取原文

摘要

Vorticity fluctuations have been identified as an important coupling mechanism during velocity-coupled combustion instability in swirl-stabilized flames. Acoustic oscillations in the combustor can cause all components of vorticity to oscillate, particularly the cross-stream, or azimuthal, vorticity that is excited in shear layer roll-up, and streamwise, or axial, vorticity that is excited during swirl fluctuations. These fluctuations can be induced by longitudinal acoustic fluctuations that oscillate across the swirler and dump plane upstream of the flame. While these fluctuations have been identified in a number of configurations, the sensitivity of this mechanism to flow configuration and boundary conditions has not been studied parametrically. In this study, we investigate the impact of time-averaged swirl level, confinement, and forcing frequency and amplitude on vorticity fluctuation dynamics in the azimuthal direction of a non-reacting swirling jet. The goal of this work is to better understand the dependence of vorticity fluctuations on these parameters as well as the vorticity conversion processes that occur in the flow. We have shown that vorticity fluctuation levels vary with time-averaged swirl number, particularly in the presence of a self-excited precessing vortex core, which dampens most acoustically-driven motion. Additionally, variations in forcing frequency excite flow response in different portions of the flow, particularly for different swirl numbers. Finally, confinement drastically changes the flow topology and unforced dynamics, resulting in significantly different response to forcing and generation of vortical fluctuations.
机译:在旋流稳定的火焰中鉴定了涡流波动作为速度耦合燃烧不稳定性的重要耦合机构。燃烧器中的声学振荡可能导致涡旋的所有组分以振荡,特别是在剪切层卷起和流动的流动,流动或轴向,涡旋中激发的交叉流或方位角的涡流,或者在旋流波动中激发。这些波动可以通过纵向声波动引起的,纵向声波动在火焰的上游旋转和倾倒平面上振荡。虽然已经以许多配置识别出这些波动,但是该机制对流动配置和边界条件的敏感性尚未参考。在这项研究中,我们研究了时间平均涡流水平,限制和强迫频率和幅度对非反应旋转射流的方位角方向上的涡度波动动力的影响。这项工作的目标是更好地了解涡旋波动对这些参数的依赖以及流程中发生的涡流转换过程。我们已经表明,涡旋波动水平随时间平均涡流数而变化,特别是在存在自我激发的精细涡旋芯,其抑制了最具声学驱动的运动。另外,在流动的不同部分中强制频率激发流响应的变化,特别是对于不同的涡流数字。最后,监禁大大改变了流体拓扑和突出的动态,导致对强迫和产生志性波动的响应显着不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号