首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >RADIAL TURBOEXPANDER OPTIMIZATION OVER DISCRETIZED HEAVY-DUTY TEST CYCLES FOR MOBILE ORGANIC RANKINE CYCLE APPLICATIONS
【24h】

RADIAL TURBOEXPANDER OPTIMIZATION OVER DISCRETIZED HEAVY-DUTY TEST CYCLES FOR MOBILE ORGANIC RANKINE CYCLE APPLICATIONS

机译:离散重载试验循环中径向涡轮膨胀剂的优化,用于移动有机RANKINE循环应用

获取原文

摘要

Mobile organic Rankine cycle (MORC) systems represent a candidate technology for the reduction of fuel consumption and CO_2 emissions from heavy-duty vehicles. Through the recovery of internal combustion engine waste heat, energy can be either compounded or used to power vehicle ancillary systems. Waste heat recovery systems have been shown to deliver fuel economy improvements of up to 13% in large diesel engines. Whilst the majority of studies focus on individual component performance under specific thermodynamic conditions, there has been little investigation into the effects of expander specification across transient test cycles used for heavy-duty engine emission certification. It is this holistic approach which will allow prediction of the validity of MORC systems for different classes of heavy-duty vehicle, in addition to providing an indication of system performance. This paper first describes a meanline (one-dimensional simulation along a mean streamline within a flow passage) model for radial ORC turbines, divided into two main subroutines. An on-design code takes a thermodynamic input, before generating a candidate geometry for a chosen operating point. The efficacy of this design is then evaluated by an off-design code, which applies loss correlations to the proposed geometry to give a prediction of turbine performance. The meanline code is then executed inside a quasi-steady-state ORC cycle model, using reference emission test cycles to generate exhaust (heat source) boundary conditions, generated by a simulated 11.7L heavy-duty diesel engine. A detailed evaporator model, developed using the NTU-effectiveness method and single/two-phase flow correlations, provides accurate treatment of heat flow within the system. Together, these elements allow estimation of ORC system performance across entire reference emission test cycles. In order to investigate the limits of MORC performance, a Genetic Algorithm is applied to the ORC expander, aiming to optimize the geometry specification (radii, areas, blade heights, angles) to provide maximal time-averaged power output. This process is applied across the reference duty cycles, with the implications on power output and turbine geometry discussed for each. Due to the large possible variation in thermodynamic conditions within the turbine operating range a typical ideal-gas methodology (generating a single operating map for interpolation across all operating points) is no longer accurate - a complete off-design calculation must therefore be performed for all operating points. To reduce computational effort, discretization of the ORC thermodynamic inputs (temperature, mass flow rate) is investigated with several strategies proposed for reduced-order simulation. The paper concludes by predicting which heavy-duty emission test cycles stand to benefit the most from this optimization procedure, along with a comparison to existing transient results. Duty cycles containing narrow bands of operation were found to provide optimal performance, with a Constant-Speed, Variable-Load cycle achieving an average power output of 4.60 kW. Consideration is also given to the effectiveness of the methodology contained within the paper, the challenges of making ORC systems viable for mobile applications, along with suggestions for future research developments.
机译:移动有机朗肯循环(MORC)系统代表了一种减少重型车辆燃料消耗和CO_2排放的候选技术。通过回收内燃机废热,可以将能量混合或用于为车辆辅助系统提供动力。事实证明,废热回收系统可将大型柴油机的燃油经济性提高多达13%。尽管大多数研究着眼于特定热力学条件下的单个部件性能,但很少有研究针对用于重型发动机排放认证的瞬态测试循环对膨胀机规格的影响。正是这种整体方法,除了提供系统性能的指标之外,还可以预测不同类别的重型车辆的MORC系统的有效性。本文首先描述了径向ORC涡轮的均值线(沿流道内的平均流线进行一维模拟)模型,该模型分为两个主要子程序。在生成用于选定工作点的候选几何图形之前,设计上的代码将接受热力学输入。然后,通过非设计规范评估该设计的功效,该规范将损耗相关性应用于建议的几何形状,以预测涡轮机性能。然后,在准稳态ORC循环模型中执行均值代码,使用参考排放测试循环生成废气(热源)边界条件,该条件由模拟的11.7L重型柴油机产生。使用NTU效率方法和单相/两相流相关性开发的详细的蒸发器模型,可对系统内的热流进行精确处理。这些元素结合在一起,可以估算整个参考排放测试周期内的ORC系统性能。为了研究MORC性能的局限性,将遗传算法应用于ORC扩展器,旨在优化几何结构规格(半径,面积,叶片高度,角度),以提供最大的时间平均功率输出。该过程适用于参考占空比,并讨论了对功率输出和涡轮几何的影响。由于涡轮机运行范围内热力学条件可能会发生很大变化,因此典型的理想气体方法(生成用于在所有工作点上进行插值的单个工作图)不再准确-因此必须对所有设备执行完整的非设计计算工作点。为了减少计算量,研究了ORC热力学输入(温度,质量流率)的离散化,并提出了几种用于降阶模拟的策略。本文通过预测哪些重型排放测试周期最受益于此优化程序以及与现有瞬态结果的比较来得出结论。发现包含窄工作频带的占空比可提供最佳性能,恒速,可变负载循环可实现4.60 kW的平均功率输出。还考虑了本文包含的方法的有效性,使ORC系统适用于移动应用程序的挑战以及对未来研究发展的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号