首页> 外文会议>Conference on advances in optical and mechanical technologies for telescopes and instrumentation II >Mathematical and computational modeling of a ferrofluid deformable mirror for high-contrast imaging
【24h】

Mathematical and computational modeling of a ferrofluid deformable mirror for high-contrast imaging

机译:用于高对比度成像的铁磁流体可变形镜的数学和计算模型

获取原文
获取外文期刊封面目录资料

摘要

Deformable mirrors (DMs) are an enabling and mission-critical technology in any coronagraphic instrument designed to directly image exoplanets. A new ferrofluid deformable mirror technology for high-contrast imaging is currently under development at Princeton, featuring a flexible optical surface manipulated by the local electromagnetic and global hydraulic actuation of a reservoir of ferrofluid. The ferrofluid DM is designed to prioritize high optical surface quality, high-precision/low-stroke actuation, and excellent low-spatial-frequency performance-capabilities that meet the unique demands of high-contrast coronagraphy in a space-based platform. To this end, the ferrofluid medium continuously supports the DM facesheet, a configuration that eliminates actuator print-through (or, quilting) by decoupling the nominal surface figure from the geometry of the actuator array. The global pressure control allows independent focus actuation. In this paper we describe an analytical model for the quasi-static deformation response of the DM facesheet to both magnetic and pressure actuation. These modeling efforts serve to identify the key design parameters and quantify their contributions to the DM response, model the relationship between actuation commands and DM surface-profile response, and predict performance metrics such as achievable spatial resolution and stroke precision for specific actuator configurations. Our theoretical approach addresses the complexity of the boundary conditions associated with mechanical mounting of the facesheet, and makes use of asymptotic approximations by leveraging the three distinct length scales in the problem-namely, the low-stroke (~nm) actuation, facesheet thickness (~mm), and mirror diameter (~cm). In addition to describing the theoretical treatment, we report the progress of computational multiphysics simulations which will be useful in improving the model fidelity and in drawing conclusions to improve the design.
机译:可变形反射镜(DM)是任何旨在直接对系外行星成像的日冕仪中的一项关键任务技术。普林斯顿目前正在开发一种新的用于高对比度成像的铁磁流体可变形反射镜技术,该技术具有通过铁磁流体储层的局部电磁和整体液压致动来操纵的灵活光学表面。铁磁流体DM的设计优先考虑了高光学表面质量,高精度/低冲程驱动以及出色的低空间频率性能,可满足基于空间平台的高对比度冠层照相术的独特需求。为此,铁磁流体介质连续支撑DM面板,该配置通过将名义表面图形与执行器阵列的几何形状脱钩,从而消除了执行器的印穿(或,缝)现象。全局压力控制允许独立聚焦致动。在本文中,我们描述了DM面板对磁和压力驱动的准静态变形响应的分析模型。这些建模工作可用于识别关键设计参数并量化其对DM响应的贡献,对执行命令和DM表面轮廓响应之间的关系进行建模,并预测性能指标,例如针对特定执行器配置可实现的空间分辨率和行程精度。我们的理论方法解决了与面板机械安装相关的边界条件的复杂性,并通过利用问题中的三个不同的长度尺度(即低冲程(〜nm)致动,面板厚度( (〜mm)和镜子直径(〜cm)。除了描述理论处理之外,我们还报告了计算多物理场仿真的进展,这将有助于提高模型的保真度并得出结论以改进设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号