首页> 外文会议>International congress on advances in nuclear power plants >Uncertainty Quantification of Physical Models and Extrapolation of Uncertainties during LBLOCA
【24h】

Uncertainty Quantification of Physical Models and Extrapolation of Uncertainties during LBLOCA

机译:LBLOCA期间物理模型的不确定性量化和不确定性外推

获取原文

摘要

The use of the best-estimate (BE) computer codes in safety analysis for large break loss-of-coolant accident (LBLOCA) is the major trend in many countries to reduce the significant conservatism. A key feature of this BE evaluation requires the licensee to quantify the uncertainty of the calculations. Uncertainty includes those of physical model and correlation, plant operational parameters, and so forth. The statistical methods in uncertainty quantification process are used to reasonably determine the uncertainty ranges of physical models instead of expert judgement. Initially, the most influential parameters are determined based on the sensitivity analysis on each parameter or ranking of Pearson 's coefficient on each parameter obtained by randomly sampled calculation with the preliminary fixed uncertainty ranges. Those analysis are performed with respect to the twenty-one influential parameters associated with reflooding phenomena (highly ranked parameters from Rod Bundle Heat Transfer program performed by USNRC). In this study, CIRCE method and MCDA method are used to quantify the distribution of the most influential parameters during reflood phase of LOCA in MARS-KS thermal-hydraulic code. CIRCE method, developed by CEA in FRANCE, is an inverse method using the E-M (Expectation-Maximization) algorithm based on the principle of maximum of likelihood and Bayes' theorem. MCDA method has been developed by KAER1 in Korea based on Bayesian statistics as well. FEBA reflooding tests are chosen to quantify uncertainty ranges in the CIRCE and MCDA methods. With the determined uncertainty ranges in two methods, envelope calculation with randomly sampled uncertainty parameters for FEBA tests themselves are performed to check and confirm whether the experimental responses such as the cladding temperature are inside the limits of calculated uncertainty bounds. Recently, one of the main questions raised in uncertainty quantification, is the capacity of extrapolating the quantified uncertainties of input parameters which is determined in the small scale separate effect test (SET) experiments to the larger scale experiments or nuclear power plants. For those application, more uncertainty parameters or different set of parameters may be needed because of the different thermal-hydraulic behavior or multi-dimensional effects. So, a confirmation step through uncertainty evaluation is conducted to estimate the contribution of the uncertainty parameters in the case of the large scale integrated effect test (IET) experiment like LOFT L2-5 and the commercial nuclear power plant during LBLOCA.
机译:在许多重大冷却剂损失事故(LBLOCA)安全性分析中使用最佳估计(BE)计算机代码是许多国家减少重大保守性的主要趋势。此BE评估的一个关键功能是要求被许可方量化计算的不确定性。不确定性包括物理模型和相关性,工厂运行参数等等。不确定性量化过程中的统计方法被用来合理地确定物理模型的不确定性范围,而不是专家判断。最初,最有影响力的参数是基于对每个参数的敏感性分析或对每个参数的皮尔森系数的排名确定的,这些系数是通过在固定的不确定性范围内进行随机抽样计算而获得的。这些分析是针对与回潮现象相关的二十一个影响参数(来自USNRC的Rod Bundle Heat Transfer程序的高度排序的参数)进行的。在这项研究中,CIRCE方法和MCDA方法被用来量化在MARS-KS热工液压代码的LOCA返洪阶段最有影响力的参数的分布。法国CEA开发的CIRCE方法是一种基于最大似然原理和贝叶斯定理的E-M(期望最大化)算法的逆方法。 MCDA方法也是韩国KAER1基于贝叶斯统计方法开发的。选择FEBA回注测试来量化CIRCE和MCDA方法中的不确定性范围。利用两种方法确定的不确定性范围,使用FEBA测试本身的随机采样不确定性参数进行包络计算,以检查并确认实验响应(例如包层温度)是否在计算得出的不确定性边界之内。最近,不确定性量化中提出的主要问题之一是将输入参数的量化不确定性外推到小规模分离效应测试(SET)实验中确定的能力,将其推广到更大规模的实验或核电厂。对于那些应用,由于不同的热工行为或多维效应,可能需要更多的不确定性参数或不同的参数集。因此,在LOLO L2-5和LBLOCA期间的商用核电站等大规模综合效应测试(IET)实验的情况下,通过不确定性评估进行确认步骤以估计不确定性参数的贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号