首页> 外文会议>European Navigation Conference >Tropospheric delays derived from ground meteorological parameters: comparison between machine learning and empirical model approaches
【24h】

Tropospheric delays derived from ground meteorological parameters: comparison between machine learning and empirical model approaches

机译:来自地面气象参数的对流层延迟:机器学习与经验模型方法之间的比较

获取原文

摘要

High spatio-temporal variability of atmospheric water vapor is directly reflected in the tropospheric pathdelays that microwave satellite signals experience. The so-called zenith total delays (ZTDs) need to be estimated in case of Global Navigation Satellite Systems (GNSS). Usually, models describe the ZTD with three meteorological parameters measured on ground: pressure, temperature and partial water vapor pressure. However, these models are determined empirically and it is especially a struggle to accurately determine the delay caused by the water vapor (wet delay) from meteorological data. In this work, we provide an alternative approach of estimating the tropospheric path delay using machine learning (ML) algorithms. During the last two decades machine learning algorithms have become widely used in many fields of science and engineering. Therefore, a large amount of time series of ZTDs and meteorological data and the successful applicability of machine learning to various applications are the main motivation behind this work. Besides, we also investigated another approach to compute ZTDs, based on the well-known Saastamoinen model [Saastamoinen, 1973], after interpolating the meteorological parameters at GNSS sites. The idea behind this work is to genarate GNSS zenith pathdelays without processing any GNSS data, but only using meteorological parameters. Therefore, GNSS zenith pathdelays from 72 permanent stations in Switzerland and meteorological data from the permanent SwissMetNet network (with over 120 stations) have been used for training and validation for a period of 11 years. The distribution of the sites all over Switzerland allows the network to be trained and validated with stations at different altitudes and with various meteorological conditions. The ML approach showed an overall accuracy of 1.6 cm in terms of standard deviation, with almost no bias. Moreover, results show that stations at higher altitudes can benefit more from this approach. Compared to the Saastamoinen model, it had an overall improvement of about 20%, with a much better estimation in summer periods, when the amount of water vapor is higher. This work is a contribution to using ML algorithms to compensate for atmospheric errors in GNSS signals, and to compare its capabilities with empirically derived models.
机译:大气中的水蒸气的高时空变化直接反映在对流层pathdelays微波的卫星信号的经验。所谓天顶总延迟(ZTDs)需要在全球导航卫星系统(GNSS)的情况下进行估计。通常,模型描述与地面上测定3个气象参数的ZTD:压力,温度和水蒸气分压。然而,这些模型是凭经验确定,它是特别斗争准确地确定从气象数据所引起的水蒸汽(湿延迟)的延时。在这项工作中,我们提供了估计使用机器学习(ML)算法的对流层路径延迟的另一种方法。在过去的二十年里的机器学习算法已广泛使用在科学和工程的许多领域。因此,大量的时间序列ZTDs和气象数据和机器学习的成功适用于各种应用背后这项工作的主要动机。此外,我们还研究了另一种方法来计算ZTDs,基于众所周知的Saastamoinen模型[Saastamoinen,1973年],在GNSS点插值气象参数之后。这背后的工作的想法是genarate GNSS天顶pathdelays没有处理任何GNSS数据,但只使用气象参数。因此,从在瑞士和气象数据从永久SwissMetNet网络(具有超过120个站)72个永久站GNSS顶点pathdelays已经用于训练和验证,为期11年。站点瑞士各地的分布允许网络进行培训,并在不同的高度站和各种气象条件进行验证。在ML的做法表现出1.6厘米的总精度标准差方面,几乎没有偏差。此外,结果显示,台在更高的高度可以从这种做法中获益更多。相比Saastamoinen模型,它有大约20%的整体改善,在夏季期间更好的估计,当水蒸汽量也较高。这项工作是用ML算法来补偿GNSS信号大气错误,其能力与经验得出的模型比较了贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号