首页> 外文会议>ASME international mechanical engineering congress and exposition >ACTIVE MAGNETIC BEARINGS FOR HIGH SPEED SPINDLE DESIGN WITH NONLINEAR TIME-FREQUENCY CONTROL
【24h】

ACTIVE MAGNETIC BEARINGS FOR HIGH SPEED SPINDLE DESIGN WITH NONLINEAR TIME-FREQUENCY CONTROL

机译:具有非线性时频控制的高速主轴设计的有源磁轴承

获取原文

摘要

A novel concept applicable to the control of spindles at high speed is developed by using active magnetic bearings (AMBs) that are non-contact and of low vibration. Though former studies are abundant and demonstrating promising potentials, however, two major issues hamper the broader application of AMBs. The first is the disregard for the gyroscopic effect and geometry coupling that influence the magnitude as well as distribution of the electromagnetic force in AMBs. Not considering the two has a significant implication for the proper control of AMBs. This paper considers the gyroscopic effect and explores the geometry coupling of the electromagnetic actuators to the formulation of a comprehensive nonlinear AMB-rotor model. The model provides the basis for the creation of a novel time-frequency control algorithm whose derivation requires no linearization or mathematical simplification of any kind, thus allowing the model system to retain its true fundamental characteristics. Unlike proportional-integral-derivative (PID) controllers that are dominant in most if not all AMB configurations, the controller developed for the research is inspired by the wavelet-based nonlinear time-frequency control methodology that incorporates the basic notions of online system identification and adaptive control. Due to the fact that dynamic instability is characterized by time-varying frequency and non-stationary spectrum, the control of AMBs needs be executed in the time and frequency-domain concurrently to ensure stability and performance at high speed. Wavelet filter banks andfiltered-x least-mean-square (LMS) algorithm are two of the major salient physical features of the controller design, with the former providing concurrent temporal and spectral resolutions needed for identifying the nonlinear state of motion and the latter ensuring the dynamic stability of the AMB-rotor system at extremely high speed. It is shown that the vibration of the rotor is unconditionally controlled by maintaining a mandatory 0.55 mm air gap at 187,500 rpm subject to a tight spatial constraint (tolerance) of the order of 0.1375mm, which is the 25% of the air gap.
机译:通过使用非接触式且振动小的主动电磁轴承(AMB),开发了适用于高速控制主轴的新颖概念。尽管以前的研究非常丰富,并且显示出令人鼓舞的潜力,但是,两个主要问题阻碍了AMB的广泛应用。首先是忽略陀螺效应和几何耦合的影响,这些影响会影响AMB中电磁力的大小和分布。不考虑两者对正确控制AMB具有重要意义。本文考虑了陀螺效应,并探讨了电磁执行器的几何耦合,以建立一个综合的非线性AMB转子模型。该模型为创建新的时频控制算法提供了基础,该算法的推导不需要任何形式的线性化或数学简化,因此可以使模型系统保留其真正的基本特征。与大多数(即使不是全部)AMB配置中占主导地位的比例积分微分(PID)控制器不同,为该研究开发的控制器的灵感来自基于小波的非线性时频控制方法,该方法结合了在线系统识别和在线控制的基本概念。自适应控制。由于动态不稳定性的特征在于时变频率和非平稳频谱,因此AMB的控制需要在时域和频域中同时执行,以确保高速时的稳定性和性能。小波滤波器组和滤波X最小均方(LMS)算法是控制器设计的两个主要显着物理特征,前者提供了识别运动非线性状态所需的同时时间和频谱分辨率,而后者则确保了运动的非线性状态。 AMB转子系统在极高速度下的动态稳定性。结果表明,在187,500 rpm的转速下保持0.55 mm的强制性气隙可以无条件地控制转子的振动,该空间受到严格的空间约束(公差),即0.1375mm,即气隙的25%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号