首页> 外文会议>IEEE Aerospace Conference >Radio astrometry of the Cassini spacecraft with the very long baseline array
【24h】

Radio astrometry of the Cassini spacecraft with the very long baseline array

机译:具有超长基线阵列的卡西尼号航天器的射电天文测量

获取原文

摘要

The planetary ephemeris is a fundamental tool of astronomy that is essential for dynamical studies of the solar system, pulsar timing, tests of general relativity, occultation and eclipse predictions, and interplanetary spacecraft navigation. Since Jupiter and Saturn dominate the dynamics of our solar system, improved knowledge of their orbits will result in a global improvement in the accuracy of the ephemeris. The Cassini spacecraft has been orbiting Saturn for over a decade, a third of Saturn's orbital period. This has provided an unprecedented opportunity to improve all components of Saturn's orbit by combining periodic very long baseline inferterometry (VLBI) measurements of Cassini's sky position with respect to background radio sources, which in turn can be tied to the inertial International Celestial Reference Frame (ICRF). The orbit of Cassini about the center of mass of Saturn is determined from Doppler tracking by the Deep Space Network. Combining these observations, we obtain the barycenter position of the Saturn system in an inertial frame at multiple epochs, with typical uncertainties of 0.3 milli-arcseconds in right ascension and 0.4 milli-arcseconds in declination. These results are then provided to JPL's ephemeris group for inclusion in future ephemeris solutions. At most epochs the largest component of the error budget is uncertainty in the ICRF position of the phase reference radio source used. These source positions are being continuously improved through additional VLBI observations. These VLBA observations have improved our knowledge of Saturn's orbit by nearly an order of magnitude. This technique will be expanded to include astrometric observations of the Juno spacecraft as soon as it enters Jupiter orbit in mid-2016. Although the orbital phase of the Juno mission is expected to last only a bit over one year, it will still allow a significant improvement in Jupiter's orbit. Previous missions to Jupiter have been single-epoch flybys wit- the exception of Galileo, for which the accuracy of VLBI position measurements was severely limited by failure of the high gain antenna. The Juno mission is scheduled to end in February 2018, five months after the scheduled end of the Cassini mission. At the ends of their missions the Juno and Cassini spacecraft will be destroyed in the atmospheres of Jupiter and Saturn to eliminate the possibility of a future crash onto any of the liquid-containing moons of these planets that may be habitats of life.
机译:行星星历是天文学的基本工具,对于太阳系的动力学研究,脉冲星计时,广义相对论的测试,掩星和日食预测以及行星际航天器导航都是必不可少的。由于木星和土星在我们太阳系的动力学中占主导地位,因此对它们的轨道的了解不断增强,将使星历的准确性得到全球改善。卡西尼号飞船已经在土星轨道上运行了十多年,占土星轨道周期的三分之一。通过结合卡西尼星空相对于背景无线电源的定期非常长的基线推断法(VLBI)测量,这为改善土星轨道的所有组成部分提供了前所未有的机会,而后者又可以与惯性国际天体参考系(ICRF)联系在一起)。卡西尼号围绕土星质心的轨道是由深空网络根据多普勒跟踪确定的。结合这些观察结果,我们获得了土星系统在多个时期的惯性系中的重心位置,典型的不确定性是右旋上升0.3毫秒,磁偏角的不确定性为0.4毫秒。然后将这些结果提供给JPL的星历组,以包括在将来的星历解决方案中。在大多数情况下,误差预算的最大组成部分是所用相位参考无线电源的ICRF位置的不确定性。通过其他VLBI观测,这些源头位置正在不断改善。这些VLBA观测将我们对土星轨道的了解提高了近一个数量级。这项技术将在2016年中旬进入木星轨道后立即扩展到包括对Juno航天器的天文观测。尽管朱诺号航天飞机的轨道阶段预计将只持续一年多一点,但仍将大大改善木星的轨道。除伽利略外,以前对木星的飞行任务都是单周期飞越,因为高增益天线的故障严重限制了VLBI位置测量的精度。朱诺任务计划于2018年2月结束,这是卡西尼号任务计划结束后的五个月。在他们的任务结束时,朱诺和卡西尼号飞船将在木星和土星的大气中被摧毁,以消除将来可能撞向这些可能是生命栖息地的行星上任何含液体卫星的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号