首页> 外文会议>European corrosion congress >Experimental work on passivation mechanisms and cracking planes of 304L stainless steel stress corrosion cracking in acidic medium using Atomic Emission Spectro-Electrochemistry, SEM, EBSD, and XRD techniques
【24h】

Experimental work on passivation mechanisms and cracking planes of 304L stainless steel stress corrosion cracking in acidic medium using Atomic Emission Spectro-Electrochemistry, SEM, EBSD, and XRD techniques

机译:原子发射光谱电化学,SEM,EBSD和XRD技术在酸性介质中304L不锈钢应力腐蚀开裂的钝化机理和开裂面的实验工作

获取原文

摘要

SCC was produced for 304L austenitic stainless steel in different concentrations of chloride containing sulfuric acid solutions: (M 2 H_2SO_4 + M 0.5 NaCl). Scanning Electron Microscope (SEM), and Electron Backscatter Diffraction (EBSD) were used to characterize the produced cracks. Analysis revealed grains to be ruptured preferentially according to four plane families; {111}, {110}, {102}, and {211} with percentages rounded to (28,27, 17, 16) % respectively. Film Rupture-dissolution Model [1] explains intergranular SCC as cycles of mechanical slip-induced passive film breakdown causing excessive material dissolution until it repassivates again. For face centered cubic crystals, {111} planes are those over which slipping occurs. However, rupture planes could be of {110} family due to equal dislocation-pile-up on the primary and conjugate {111} planes [2], As illustrated in Fig. 1, the macroscopically applied stress (Σ) on the material is redistributed over the grains locally (σ) according to their individual crystallographical orientation. To analyze this further, an elasto-mechanical modeling is to be performed using Finite Element Methods at the crystalline scale to try to find the potential planes with maximum stresses. Interaction of the local crystallographical aspects with Stress intensity factor at crack tip, and resulting local plasticity is to be analyzed. Results will be correlated to the experimental results obtained.
机译:在不同浓度的含氯化物的硫酸溶液(M 2 H_2SO_4 + M 0.5 NaCl)中,为304L奥氏体不锈钢生产了SCC。使用扫描电子显微镜(SEM)和电子反向散射衍射(EBSD)来表征产生的裂纹。分析表明,谷物根据四个平面家族优先破裂。 {111},{110},{102}和{211},其百分比分别舍入到(28,27,17,16)%。膜破裂溶解模型[1]将晶间SCC解释为机械滑移引起的被动膜破裂导致材料过度溶解直至再次钝化的循环。对于面心立方晶体,{111}平面是发生滑动的平面。但是,由于在主{111}平面和共轭{111}平面上有相同的位错堆积,破裂平面可能属于{110}族。如图1所示,材料上的宏观施加应力(Σ)为根据它们各自的晶体学取向,在颗粒(σ)上局部重新分布。为了对此进行进一步分析,将使用有限元方法在晶体尺度上进行弹性力学建模,以试图找到具有最大应力的潜在平面。将分析局部晶体学方面与裂纹尖端处的应力强度因子的相互作用,以及由此产生的局部可塑性。结果将与获得的实验结果相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号