首页> 外文会议>European Optical Society annual meeting >Exciton-Polaritons in Open Organic Microcavities
【24h】

Exciton-Polaritons in Open Organic Microcavities

机译:开放有机微腔中的激子-紫胶

获取原文

摘要

Strong interactions between excitons and photons, e.g. in a semiconductor microcavity, lead to the formation of hybrid light-matter quasiparticles called exciton-polaritons. In recent years, polaritons have attracted special attention as their bosonic character features new emergent phenomena like non-equilibrium condensation or superfluidity. Most of these seminal experiments were performed by using inorganic semiconductor microcavities (based on e.g. the GaAs material system). This requires the use of low-temperature facilities owing to the instability of Wannier-Mott excitons at elevated temperatures. In contrast to this, Frenkel excitons, characteristic of organic semiconductors, possess much larger binding energies and are stable at room temperature, making polariton experiments at ambient air conditions feasible. Organic materials further exhibit very large oscillator strengths and thus strongly interact with a cavity field. However, the implementation of organic semiconductors in optical microcavities is challenging because organic materials are very sensitive to the depositing of semiconductor layers on top of them. Circumventing these issues, we use an open cavity system, which makes non-invasive investigation of the active material possible. Open cavities are tunable systems and comprise a bottom semiconductor distributed Bragg reflector (DBR) with the active material (the organic semiconductor) on top and a concave top DBR separated by a micrometer sized air gap. This configuration allows a 3D photonic confinement and brings unprecedently high quality factors into reach. The concave top DBRs were prepared by focused ion beam (FIB) milling on Si02 substrates and subsequent deposition of a DBR structure. The organic material was spin-coated onto the plane bottom DBR that consists of the same DBR layout as the top mirror. Both mirrors are attached to nanopositioners allowing the spectral tuning of cavity modes by changing the mirror distance. We demonstrate the versatility of open cavities by performing reflectivity and photoluminescence measurements in Fourier imaging configuration and investigate the strong exciton-photon coupling between different organic systems (J-aggregates, proteins and cyanines) and the dielectric cavity. We emphasize that the open cavity approach can easily be extended to more complex active regions including two-dimensional monolayer materials or hybrid organic-inorganic bilayers.
机译:激子和光子之间的强相互作用,例如在半导体微腔中,会导致形成称为激子-极化子的杂化光子准粒子。近年来,极化子因其玻色特征具有新出现的现象(如非平衡缩合或超流动性)而引起了特别的关注。这些开创性实验中的大多数是通过使用无机半导体微腔(基于GaAs材料系统)进行的。由于Wannier-Mott激子在高温下不稳定,因此需要使用低温设备。与此相反,有机半导体特有的Frenkel激子具有更大的结合能,并且在室温下稳定,这使得在环境空气条件下进行极化子实验变得可行。有机材料还表现出非常大的振荡器强度,因此与腔场强烈相互作用。然而,由于有机材料对半导体层在其顶部上的沉积非常敏感,因此在光学微腔中实施有机半导体是具有挑战性的。为了避免这些问题,我们使用了开放腔系统,这使对活性物质的非侵入性研究成为可能。开腔是可调系统,包括底部半导体分布的布拉格反射器(DBR),顶部具有活性材料(有机半导体),顶部凹入的DBR由微米级的气隙隔开。这种配置可实现3D光子限制,并带来前所未有的高品质因数。通过在SiO 2衬底上聚焦离子束(FIB)研磨并随后沉积DBR结构来制备凹形顶部DBR。将有机材料旋涂到平面底部DBR上,该平面底​​部DBR与顶部反射镜具有相同的DBR布局。两个反射镜都连接到纳米定位器上,从而可以通过更改反射镜距离来对腔模进行光谱调整。我们通过在傅立叶成像配置中执行反射率和光致发光测量来证明开放腔的多功能性,并研究不同有机系统(J聚集体,蛋白质和花菁)与介电腔之间的强激子-光子耦合。我们强调开放腔方法可以轻松地扩展到更复杂的有源区域,包括二维单层材料或有机-无机双层混合层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号