首页> 外文会议>ASME international mechanical engineering congress and exposition >DESIGN OF A BIOMEDICAL DEVICE THROUGH NON LINEAR ANALYSIS
【24h】

DESIGN OF A BIOMEDICAL DEVICE THROUGH NON LINEAR ANALYSIS

机译:通过非线性分析的生物医学装置设计

获取原文

摘要

The most widely accepted hypothesis to explain normal pressure hydrocephalus (NPH) points at the increase of cerebrospinal fluid (CSF) outflow resistance as the fundamental cause. Some clinical and experimental studies do not agree with this hypothesis and suggest that NPH is related to an alteration of the CSF pulse pressure waveform, while intracranial pressure (ICP) mean value has negligible effects. The current treatment of hydrocephalus is based on the first hypothesis and consists in the implantation of CSF shunts. An improved treatment can be obtained by damping the ICP pressure peaks and keeping unchanged the mean value. The target of this work is to design a special ICP regulator valve, that will be implanted in a human body and that must be characterized by a purely mechanical working principle avoiding any electrical equipment (sensors, actuators...). This device is currently patented and in virtue of that the paper will focus only on the general device working principle and design methodology rather than specific data. Since the device must be implanted inside the patient head, the system must satisfy very restrictive requirements: low weight and dimensions in order to avoid possible patient discomfort or obstacles to the normal life activities, in addition, being the valve application place close to a delicate organ such the brain is, the mechanism must be very simple and must reach very high reliability standards (almost zero maintenance and possible failures). The idea is to realize a device in which the hydraulic flow is governed by a spring with variable stiffness with respect to the applied loads (intracranial pressure: characterized by both a mean constant component and by random oscillatory phenomenon). To maximize the valve effect about pressure peaks reduction, the spring will be designed with a strongly non-linear behavior characterized by bistable working principle. The systems that show this properties are innumerable, but according to the author hypothesis to realize a mechanism as simpler as possible the choice done falls into the thin curved plate (shell) category. In particular, the goal is to obtain a plate behavior called "Buckling Behavior": under determined load conditions the plate geometric configuration must suddenly switch from an equilibrium position to another. The two target parameters which describe this phenomenon are the buckling critical load that is the applied load value for which the plate change the geometric configuration (valve activation point) and the load application point displacement (evacuation pipe opening). The adopted design method is the non-linear analysis developed in a finite element analysis (F.E.A.) environment, by which it is possible to analyze a component behavior also in case of large displacements. To identify the optimal component geometry the load application point displacement versus the acting load was evaluated as function of the main parameters describing the plate profile: plate semi-length, curvature radius and semi-length of the plate plane portion. This work represents only a preliminary study oriented to demonstrate the feasibility in realizing a biomedical valve for fluids pressure control, adopting a thin curved plate with "Buckling Behavior". Moreover it provides useful information for the designer who wants to realize curved plate with buckling behavior showing the influence of the main geometric parameters on this phenomenon. Further in depth studies oriented to: the spring stiffness regulation for different patients, best material choice and productive process must be accomplished before the device realization.
机译:解释正常压力脑积水(NPH)的最广泛接受的假说是脑脊液(CSF)流出阻力增加的根本原因。一些临床和实验研究与该假设不一致,并暗示NPH与CSF脉压波形的改变有关,而颅内压(ICP)平均值的影响可忽略不计。脑积水的当前治疗基于第一个假设,并且在于脑脊液分流器的植入。通过抑制ICP压力峰值并保持平均值不变,可以获得改进的处理方法。这项工作的目标是设计一种特殊的ICP调节阀,该阀将植入人体,并且必须具有纯机械工作原理,避免使用任何电气设备(传感器,执行器...)。该设备目前已获得专利,因此,本文将仅关注一般设备的工作原理和设计方法,而不是特定的数据。由于该设备必须植入患者头部内部,因此该系统必须满足非常严格的要求:重量轻,尺寸小,以避免患者可能出现不适或对正常生活活动造成障碍,此外,该阀门还应放置在非常脆弱的地方如大脑这样的器官,其机制必须非常简单,并且必须达到很高的可靠性标准(几乎零维护和可能的故障)。这个想法是要实现这样一种装置,其中液压流由相对于所施加的载荷(颅内压力:既具有平均常数分量又具有随机振荡现象表征)的具有可变刚度的弹簧来控制。为了最大程度地减小阀的压力峰值,弹簧将设计为具有强烈的非线性特性,并具有双稳态工作原理。表现出这种特性的系统是无数的,但是根据作者的假设,为实现一种尽可能简单的机制,所做的选择属于薄弯板(壳)类别。特别地,目标是获得一种称为“屈曲行为”的板性能:在确定的载荷条件下,板的几何构型必须突然从平衡位置切换到另一个位置。描述此现象的两个目标参数是屈曲临界载荷,该临界载荷是施加的载荷值,对于该载荷值,板会改变几何形状(阀激活点)和载荷施加点位移(排气管打开)。所采用的设计方法是在有限元分析(F.E.A.)环境中开发的非线性分析方法,通过该方法,即使在大位移情况下也可以分析部件性能。为了确定最佳的零件几何形状,根据描述板轮廓的主要参数评估了载荷施加点位移与作用载荷之间的关系:板半长,板半部的曲率半径和半长。这项工作仅是一项初步研究,旨在证明采用具有“屈曲行为”的薄弯板来实现用于流体压力控制的生物医用阀的可行性。此外,它为想要实现具有屈曲行为的弯曲板的设计者提供了有用的信息,表明了主要几何参数对这种现象的影响。在针对以下方面的进一步深入研究中:针对不同患者的弹簧刚度调节,最佳材料选择和生产过程必须在设备实现之前完成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号