首页> 外文会议>ASME international mechanical engineering congress and exposition >2D 3D MULTISCALE COMPUTATIONAL MODELING OF DYNAMIC MICROORGAN DEVICES AS DRUG SCREENING PLATFORMS
【24h】

2D 3D MULTISCALE COMPUTATIONAL MODELING OF DYNAMIC MICROORGAN DEVICES AS DRUG SCREENING PLATFORMS

机译:作为药物筛查平台的动态微生物设备的2D和3D多尺度计算建模

获取原文

摘要

The ability to incorporate three-dimensional (3D) hepatocyte-laden hydrogel constructs using layered fabrication approaches into devices that can be perfused with drugs enables the creation of dynamic microorgan devices (DMDs) that offer an optimal analog of the in vivo liver metabolism scenario. The dynamic nature of such in vitro metabolism models demands reliable numerical tools to determine the optimum process, material, and geometric parameters for the most effective metabolic conversion of the perfused drug into the liver microenvironment. However, there is a current lack of literature that integrates computational approaches to guide the optimum design of such devices. The groundwork of the present numerical study has been laid by our previous study, where the authors modeled in 2D an in vitro DMD of arbitrary dimensions and identified the modeling challenges towards meaningful results. These constructs are hosted in the chamber of the microfluidic device serving as walls of the microfluidic array of channels through which a fluorescent drug substrate is perfused into the microfluidic printed channel walls at a specified volumetric flow rate assuring Stokes flow conditions (Re<<1). Due to the porous nature of the hydrogel walls, a metabolized drug product is collected at the outlet port. A rigorous FEM based modeling approach is presented for a single channel parallel model geometry (1 free flow channel with 2 porous walls), where the hydrodynamics, mass transfer and pharmacokinetics equations are solved numerically in order to yield the drug metabolite concentration profile at the DMD outlet. The fluid induces shear stresses are assessed both in 3D, with only 27 cells modeled as single compartment voids, where all of the enzymatic reactions are assumed to take place. In this way, the mechanotransduction effect that alters the hepatocyte metabolic activity is assessed for a small scale model. This approach overcomes the numerical limitations imposed by the cell density (~10~(12) cells/m~3) of the large scale DMD device. In addition, a compartmentalization technique is proposed in order to assess the metabolism process at the subcellular level. The numerical results are validated with experiments to reveal the robustness of the proposed modeling approach and the necessity of scaling the numerical results by preserving dynamic and biochemical similarity between the small and large scale model.
机译:使用分层制造方法将三维(3D)载有肝细胞的水凝胶构建体整合到可以灌注药物的设备中的能力,可以创建动态微器官设备(DMD),该设备可提供体内肝脏代谢场景的最佳类似物。这种体外代谢模型的动态性质需要可靠的数值工具来确定最佳方法,材料和几何参数,以将灌注药物最有效地代谢转化为肝微环境。但是,目前缺乏将计算方法集成在一起以指导此类设备的最佳设计的文献。本数值研究的基础已经由我们先前的研究奠定了基础,在该研究中,作者对任意尺寸的体外DMD进行了2D建模,并确定了实现有意义结果的建模挑战。这些构建体位于微流控设备的腔室中,该腔室用作微流控通道阵列的壁,荧光药物底物通过该腔室以指定的体积流量灌注到微流控印刷通道壁中,从而确保斯托克斯流条件(Re << 1) 。由于水凝胶壁的多孔性质,代谢的药物产物收集在出口处。针对单通道平行模型几何结构(1个自由流动通道,带有2个多孔壁),提出了一种基于FEM的严格建模方法,其中对流体动力学,传质和药代动力学方程进行了数值求解,以生成DMD处的药物代谢物浓度曲线出口。流体诱导的剪切应力均以3D方式进行评估,只有27个细胞被建模为单腔空隙,其中所有酶促反应均假定发生。以这种方式,针对小规模模型评估了改变肝细胞代谢活性的机械转导作用。这种方法克服了大型DMD设备的细胞密度(〜10〜(12)cells / m〜3)带来的数值限制。另外,提出了区室化技术以在亚细胞水平上评估代谢过程。通过实验验证了数值结果,以揭示所提出的建模方法的鲁棒性以及通过保留小规模模型与大型模型之间的动态和生化相似性来缩放数值结果的必要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号