首页> 外文会议>ASME heat transfer conference >REVIEW OF MOLTEN SALT NANOFLUIDS
【24h】

REVIEW OF MOLTEN SALT NANOFLUIDS

机译:盐类纳米流体综述

获取原文

摘要

Literature review of molten salt nanofluids is performed in this study with focus on the thermo-fiuidic properties and performance in thermal management applications. The colloidal mixture of nanoparticles in a base liquid phase is called nanofluid. Molten salts such as alkali nitrate eutectics, alkali carbonate eutectics and alkali chloride eutectics have high melting temperatures. These materials are suitable for various high temperature applications, including as Heat Transfer Fluid (HTF), Thermal Energy Storage (TES), Concentrated Solar Power (CSP) plants, nuclear power, etc. The major drawback of molten salt materials is their low thermal conductivity and specific heat capacity. Enhancing the thermo-physical properties of molten salt materials can lower the cost of power production involving these materials (e.g., as HTF and/ or TES in CSP or nuclear power plants. Mixing molten alt eutectics with nanoparticles (e.g., molten salt nanofluids) can provide a cost-effective technique for enhancing the specific heat capacity and thermal conductivity which in turn can enable the reduction in the cost of power production. In this review - the following topics involving molten salt nanofluids were explored: thermo-physical property measurements, numerical modeling (e.g., Molecular Dynamics/ MD simulations), materials characterization (e.g., using electron microscopy techniques - such as SEM and TEM). For example, SEM studies in conjunction with MD simulation results confirm the formation of a dense layer of fluid molecules on the surface of nanoparticles that can enhance the specific heat capacity of these molten salt nanomaterials. Subsequently the concepts of nanofins was explored (which involves the study of interfacial thermal impedance, such as resistance, capacitance and diodicity). The contribution of these interfacial thermal impedances to the enhancement of specific heat capacity and thermal conductivity are also explored. Specific heat enhancement as high as 100% has been observed for various molten salt eutectics when doped with 1.5% (weight) silica nanoparticles. Various synthesis protocols such as one-step, two-step and three-step methods as well as conventional experimental methods used for specific heat capacity measurement are compared and examined. A review of the effects of concentration, nanoparticle size, temperature, base fluid, and nanofluid chemical properties is also performed. Other topics of interest are the anomalous enhancement of thermal conductivity in molten salt nanofluids which contradict typical predictions obtained from using the effective medium theory. The available data in literature shows enhancement in thermal conductivity by as much as 35-45% for carbonate eutectics doped with silica nanoparticles at 1% mass fraction. The possible mechanisms suggested for this improvement are briefly discussed and compared with experimental observations (e.g., using SEM). In addition, nanofluids often display non-Newtonian rheological behavior. This necessitates a rigorous study, since the applications of nanofluids will impact the required pumping power. Studies show that the rheological properties of molten salt nanofluids are a function of base salt composition, shape of nanoparticles selected, chemical formula of nanoparticles, concentration of nanoparticles, size of nanoparticles, temperature, shear rate and synthesis protocol of the nanofluid. Several models are introduced to predict the viscosity variation along with their advantageous and disadvantages. SEM results show agglomeration of nanoparticles can be reduced by doping the nanofluids with very small values of mass fractions of additives such as Gum Arabic..
机译:熔盐纳米流体的文献综述在本研究中进行了专注于热管理应用中的热 - 氟化特性和性能。基础液相中纳米颗粒的胶体混合物称为纳米流体。熔融盐,如碱硝酸盐,碱碳酸盐共析液和碱氯化物酰氯具有高熔化温度。这些材料适用于各种高温应用,包括作为传热流体(HTF),热能储存(TES),集中的太阳能(CSP)植物,核电等。熔盐材料的主要缺点是它们的低热缺点电导率和特定的热容量。增强熔盐材料的热物理性质可以降低涉及这些材料的电力生产成本(例如,作为CSP或核电厂中的HTF和/或TES。将熔融ALT共肠与纳米颗粒(例如,熔盐纳米流体)混合提供一种经济高效的技术,用于增强特定的热容量和导热性,导热性又可以降低电力生产成本。在本综述中,探讨了涉及熔盐纳米流体的以下主题:热物理性质测量,数值建模(例如,分子动态/ MD仿真),材料表征(例如,使用电子显微镜技术 - 例如SEM和TEM)。例如,与MD仿真结果结合的SEM研究证实了致密的流体分子层的形成纳米颗粒的表面可以增强这些熔盐纳米材料的比热容量。随后是纳芬素的概念探索了S(涉及研究界面热阻抗,例如电阻,电容和二环)。还探讨了这些界面热阻抗对特定热容量和导热率提高的贡献。对于掺杂有1.5%(重量)二氧化硅纳米粒子的各种熔融盐共晶,已经观察到高达100%的比例高达100%。比较和检查各种合成方案,如一步,两步和三步方法以及用于特定热容量测量的常规实验方法。还进行了对浓度,纳米粒子尺寸,温度,基础流体和纳米流体化学性质的影响的综述。其他兴趣的主题是熔盐纳米流体中热导率的异常增强,其与使用有效介质理论获得的典型预测相矛盾。文献中的可用数据显示,对于碳酸盐纳米颗粒掺杂1%质量分数的碳酸盐纳米粒子,其可用数据显示为35-45%。简要讨论并与实验观察结果简要讨论了对该改进的可能机制(例如,使用SEM)。此外,纳米流体经常显示非牛顿流变行为。这需要进行严格的研究,因为纳米流体的应用将影响所需的泵送功率。研究表明,熔盐纳米流体的流变性质是碱盐组合物的函数,纳米颗粒的形状,纳米颗粒的化学式,纳米颗粒的浓度,纳米颗粒的尺寸,纳米颗粒的尺寸,剪切速率和纳米流体的合成方案。引入了几种模型以预测粘度变化以及它们的有利和缺点。 SEM结果表明,通过将纳米流体掺杂具有非常小的添加剂的添加剂(如Gum Arabic),可以减少纳米颗粒的凝聚。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号