首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >ON THE INTERACTION OF MULTIPLE TRAVELING WAVE MODES IN THE FLUTTER VIBRATIONS OF FRICTION-DAMPED TUNED BLADED DISKS
【24h】

ON THE INTERACTION OF MULTIPLE TRAVELING WAVE MODES IN THE FLUTTER VIBRATIONS OF FRICTION-DAMPED TUNED BLADED DISKS

机译:阻尼阻尼圆盘颤振颤振中多种行波模式的相互作用研究

获取原文

摘要

The aerodynamic interference between the blades of a bladed disk can lead to self-excited vibrations known as flutter. Flutter vibrations can reach considerable levels and are thus of special concern in the design of turbomachines. The vibrations can be saturated in so-called limit cycles by the nonlinear dis-sipative effects related to dry friction in mechanical joints. For a given mode family of a tuned bladed disk, the flutter stability depends on the interblade phase angle, and often multiple traveling wave forms are unstable. In spite of this, previous investigations indicated that in the steady state, friction-damped flutter vibrations of tuned bladed disks are dominated by a single traveling wave component. In contrast, we demonstrate that, in fact, multiple traveling wave components may interact in the steady state. To this end, a phenomenological model is studied, which possesses one lumped mass per sector, elastic Coulomb friction inter-sector coupling, and two unstable traveling waves forms. Depending on the location of the complex eigenvalues of the linearized system, the steady-state vibrations are shown to be dominated by either of the two unstable waveforms or exhibit considerable contributions of both. Both periodic and quasi-periodic attractor forms are computed using Fourier methods and validated with direct time integration. Moreover, the basins of attraction of the different stable limit states are analyzed in detail. Remarkably, even if a stable, periodic vibration in a certain traveling wave is attained, a sufficiently strong instantaneous pertur- bation of the same form can give rise to a transient ending in a limit cycle with a different traveling wave character.
机译:叶片盘叶片之间的空气动力学干扰会导致自激振动,称为振颤。颤振可以达到相当大的水平,因此在涡轮机的设计中特别需要关注。通过与机械接头中的干摩擦有关的非线性耗散效应,可以在所谓的极限循环中使振动饱和。对于调谐叶片盘的给定模式系列,颤动稳定性取决于叶片间相位角,并且经常有多个行进波形不稳定。尽管如此,先前的研究表明,在稳定状态下,已调谐叶片盘的摩擦阻尼颤动振动由单个行波分量主导。相反,我们证明,实际上,多个行波分量可能在稳态下相互作用。为此,研究了一种现象学模型,该模型具有每个扇区一个集总质量,弹性库仑摩擦扇区间耦合以及两个不稳定的行波形式。取决于线性化系统的复本征值的位置,稳态振动显示为受两个不稳定波形中的任一个所控制,或表现出两者的可观贡献。周期性和准周期性吸引子形式均使用傅立叶方法进行计算,并通过直接时间积分进行了验证。此外,详细分析了不同稳定极限状态的吸引盆。值得注意的是,即使在某个行波中获得了稳定的周期性振动,相同形式的足够强的瞬时摄动也会在具有不同行波特性的极限周期内产生瞬态结束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号