首页> 外文会议>ASME Internal Combustion Engine Division technical conference >EFFECTS OF FUEL PHYSICAL PROPERTIES AND BREAKUP MODEL CONSTANTS ON LARGE-EDDY SIMULATION OF DIESEL SPRAYS
【24h】

EFFECTS OF FUEL PHYSICAL PROPERTIES AND BREAKUP MODEL CONSTANTS ON LARGE-EDDY SIMULATION OF DIESEL SPRAYS

机译:燃料物理特性和破裂模型常数对柴油机喷雾大涡模拟的影响

获取原文

摘要

The Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) wave breakup model is a commonly used model in predicting primary and secondary atomization and breakup processes in Lagrangian-Eulerian Diesel spray simulations. Droplet sizes predicted by this model are dependent on several parameters. The parameters include fuel physical properties, such as density, viscosity, and surface tension, and a number of adjustable model constants, such as KH and RT time constants, KH and RT size constants, and the breakup length constant. The purpose of this study is to investigate the effects of these parameters on predicting spray motions using large-eddy simulation with the dynamic structure sub-grid stress model. The code used in this study is OpenFOAM. This study has three major parts. Firstly, effects of the model constants on the prediction of momentum exchange process were examined by comparing liquid and gas momentum fluxes. Drag Forces exerted on liquid spray by gas phase can be determined from the slopes of gas and liquid momentum fluxes plotted against axial distance. We found that the prediction of momentum exchange between gas and liquid is most sensitive to the KH time constant, B_1, among the other model constants. Secondly, effects of fuel physical properties were investigated by using four different fuels in the simulations of non-vaporizing and vaporizing sprays. The four fuels used were n-dodecane, F76 fuel, n-hexadecane, and methyl tetradecanoate. The F76 fuel is a multi-component fuel containing twenty-one hydrocarbons. Global spray quantities such as liquid and vapor penetrations, Sauter mean diameter, total liquid mass, number of parcels, and breakup model quantities such as Ohnesorge number and KH wave speed were compared. The key finding is that not all of these quantities monotonically increase or decrease with fuel molecular weight. Lastly, effects of fuel physical properties on sensitivities of the breakup model constants were studied. We compared liquid penetration and vapor penetration for each fuel using different values of the model constants. We found that the prediction of vapor penetrations is more sensitive to the KH time constant B_1 when a fuel with lighter molecular weight was used, and the prediction of liquid penetrations is sensitive to the breakup length constant, C_b, in all of the four fuels. The computational investigations in this study reveal some limitations of the current spray breakup model, and motivate us to develop more advanced models to overcome these limitations.
机译:开尔文-亥姆霍兹/瑞利-泰勒(KH-RT)波分解模型是在拉格朗日-欧拉柴油机喷雾模拟中预测一次和二次雾化和分解过程中常用的模型。该模型预测的液滴大小取决于几个参数。这些参数包括燃料物理性质,例如密度,粘度和表面张力,以及许多可调模型常数,例如KH和RT时间常数,KH和RT尺寸常数以及分解长度常数。这项研究的目的是使用动态结构子网格应力模型,通过大涡模拟研究这些参数对预测喷雾运动的影响。本研究中使用的代码是OpenFOAM。这项研究分为三个主要部分。首先,通过比较液体和气体的动量通量,检验了模型常数对动量交换过程预测的影响。气相施加在液体喷雾上的阻力可以根据相对于轴向距离绘制的气体和液体动量通量的斜率来确定。我们发现,在其他模型常数中,气体和液体之间的动量交换的预测对KH时间常数B_1最敏感。其次,在非气化和气化喷雾的模拟中,通过使用四种不同的燃料研究了燃料物理性能的影响。使用的四种燃料是正十二烷,F76燃料,正十六烷和十四烷酸甲酯。 F76燃料是包含21个碳氢化合物的多组分燃料。比较了整体喷雾量,例如液体和蒸气的渗透量,Sauter平均直径,总液体质量,包裹数以及分解模型量(例如Ohnesorge数和KH波速)。关键发现是,并非所有这些量都随燃料分子量单调增加或减少。最后,研究了燃料物理性质对分解模型常数敏感性的影响。我们使用模型常数的不同值比较了每种燃料的液体渗透率和蒸汽渗透率。我们发现,当使用分子量更轻的燃料时,蒸汽渗透的预测对KH时间常数B_1更加敏感,而在所有四种燃料中,液体渗透的预测对分解长度常数C_b敏感。本研究中的计算研究揭示了当前喷雾破裂模型的一些局限性,并促使我们开发出更高级的模型来克服这些局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号