首页> 外文会议>International Conference on Electromagnetics in Advanced Applications >A new method for exact computation of the differential phase shift in the circular waveguide, loaded with an azimuthally magnetized ferrite cylinder and a dielectric toroid
【24h】

A new method for exact computation of the differential phase shift in the circular waveguide, loaded with an azimuthally magnetized ferrite cylinder and a dielectric toroid

机译:一种精确计算圆形波导中微分相移的新方法,该方法加载了方位磁化的铁氧体圆柱体和电介质环面

获取原文

摘要

A novel numerical technique for calculating the differential phase shift, brought forth by the circular waveguide, containing a ferrite cylinder of azimuthal magnetization and a dielectric toroid that supports normal TE0n modes, is worked out. It is based on the method of successive approximations and yields the roots α1 and α2 (|α1| ≤|α2)| of a biquadratic equation, connecting the off-diagonal ferrite Polder permeability tensor element α and the eigenvalue spectrum of the configuration. The spectrum depends on the relative permittivities of inner and outer medium εr and εd, resp., the factor ρ, determining the degree of filling of geometry with anisotropic material, the element α and the normalized regarding frequency and the constant εr guide radius r̅0. It is calculated by the roots of the structure's characteristic equation, derived formerly through complex Kummer confluent hypergeometric and real Bessel and Neumann functions. For chosen values of the quantities εr, εd, ρ, |α| and r0 the imaginary part of the complex first parameter of confluent functions is varied, until the modulus of counted root α1 (or α2) coincides with the selected numerical equivalent of the element α within the range of the prescribed accuracy. If |α| = |α1| (|α| = |α2|), for the normalized as pointed out above_phase constant β of the electromagnetic field it holds β̅ = β̅(1) (β̅= β̅(1)), where β̅1 = |α2| (β̅(2) = |αl|), (β̅(1) ≤ β̅(2)). For each set of the parameters mentioned the procedure is repeated twice for positive (counterclockwise) and negative (clockwise) direction of the magnetization of its anisotropic load towards that of the wave propagation. The difference between the two computed constants gives the phase shift sought. Numerical outcomes for three geometries are obtained in case of TE01 mode, assuming εr =εd. The approach is rather complicated, too cumbersome and very time consuming, but it provides extraordinarily high accuracy of the results (more than ten decimal places), comparable with the one, due to the recently developed for the same purpose method, invented also by the authors. The combined application of both schemes makes possible to disclose completely the entire picture of the phase shifting behaviour of transmission line considered.
机译:提出了一种新型的数值计算方法,该方法由圆形波导提出,它包含一个方位磁化的铁氧体圆柱体和一个支持正常TE0n模式的介电环面。它基于逐次逼近方法,得出根α1和α2(|α1|≤|α2)|。双二次方程的方程,将非对角铁氧体Polder磁导率张量元素α与该构型的特征值谱联系起来。光谱取决于内,外介质的相对介电常数εr和εd,分别取决于系数ρ,确定各向异性材料的几何形状填充程度,元素α以及关于频率的归一化和恒定的εr导向半径r̅0。它是根据结构特征方程的根来计算的,该方程以前是通过复杂的Kummer融合超几何以及真正的Bessel和Neumann函数得出的。对于选定量的值εr,εd,ρ,|α| r0和r0的函数的复杂的第一参数的虚部被改变,直到计数的根α1(或α2)的模量与元素α的选定数值等效值在规定精度范围内一致。如果|α| = |α1| (|α| = |α2|),对于如上指出的电磁场的相位常数β归一化,其为β̅=β̅(1)(β̅=β̅(1)),其中β̅1= |α2| (β̅(2)= |αl|),(β̅(1)≤β̅(2))。对于提到的每组参数,对于其各向异性载荷的磁化强度正向(逆时针)和负向(顺时针)朝向波传播方向重复两次。两个计算常数之间的差给出了所寻求的相移。假设εr=εd,在TE01模式下可获得三种几何形状的数值结果。该方法相当复杂,过于繁琐且非常耗时,但由于最近为同一目的方法而开发的方法也被发明,该方法可提供与结果相当的精度(十进制小数点后十位)。作者。两种方案的组合应用使得可以完全公开所考虑的传输线的相移行为的整个图片。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号