首页> 外文会议>IEEE International Conference on Plasma Sciences >Wideband matching of FDTD-PIC using a multi-phase velocity operator
【24h】

Wideband matching of FDTD-PIC using a multi-phase velocity operator

机译:使用多相速度算子对FDTD-PIC进行宽带匹配

获取原文

摘要

The basis for a multi-phase velocity non-reflecting boundary condition is found in the use of the Higdon operator. A high order implementation of the method provides a boundary method equally suited to the injection of multiple signals as well as providing a high quality absorbing boundary across a broad frequency spectrum. The result is a near perfect absorption of scattered outgoing waves originating from the simulation interior. The method has been successfully applied in many wave equation environments for a variety of media from acoustic (shallow water equation) to electromagnetic waves in dispersive media. The method is easily motivated and formulated in Cartesian coordinates. The Higdon operator of order J describing the propagation of the transverse electric, ET, along the z-axis is written as follows: [Πj=1J(∂t+vj∂z)]ET=0. The parameters represent phase velocities of the wave. This reduces to the familiar 1 dimensional wave equation for J=1, in which the sign of the phase velocity indicates either a forward or backward traveling wave. Use of J=2 leads to the 2nd order phase velocity model previously reported by the author. Indeed, we have investigated the case for J=3 as well, but found the standard implementation when converted to a finite difference operator form extremely cumbersome. Increasing the order of J requires the method capture information more remote spatially and temporally from the boundary. This increases the potential effect of geometry variation as the information capture is projected deeper into the simulation. Fortunately, there is an alternative approach suggested by Givoli and Neta. They suggest recasting the Higdon operator in terms of auxiliary functions of arbitrarily high order. Converted to a finite difference representation, each order remains a first order difference method but couples adjacent orders of the auxiliary functions.
机译:使用Higdon算子可以找到多相速度非反射边界条件的基础。该方法的高级实现方式提供了一种边界方法,该方法同样适用于注入多个信号,并且在宽频谱范围内提供了高质量的吸收边界。结果是几乎完全吸收了来自模拟内部的散射出射波。该方法已成功应用于许多波动方程环境中,用于从声波(浅水方程)到分散介质中电磁波的各种介质。该方法很容易被激发并以笛卡尔坐标表示。描述横向电子ET沿z轴传播的J阶Higdon算子如下:[Πj= 1J(∂t+vj∂z)] ET = 0。参数表示波的相速度。对于J = 1,这简化为熟悉的一维波动方程,其中相速度的符号表示向前或向后的行波。 J = 2的使用导致了作者先前报告的二阶相速度模型。确实,我们也研究了J = 3的情况,但是发现将标准实现转换为有限差分算子时非常麻烦。增加J的阶数要求该方法从边界在空间和时间上更远地捕获信息。随着信息捕获被投影到模拟的更深处,这增加了几何变化的潜在影响。幸运的是,Givoli和Neta建议使用另一种方法。他们建议根据任意高阶的辅助函数来重铸Higdon运算符。转换为有限差分表示法后,每个阶仍然是一阶差分法,但是会耦合辅助函数的相邻阶。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号