首页> 外文会议>IEEE International Conference on Plasma Sciences >Wideband matching of FDTD-PIC using a multi-phase velocity operator
【24h】

Wideband matching of FDTD-PIC using a multi-phase velocity operator

机译:使用多相速度操作员FDTD-PIC的宽带匹配

获取原文

摘要

The basis for a multi-phase velocity non-reflecting boundary condition is found in the use of the Higdon operator. A high order implementation of the method provides a boundary method equally suited to the injection of multiple signals as well as providing a high quality absorbing boundary across a broad frequency spectrum. The result is a near perfect absorption of scattered outgoing waves originating from the simulation interior. The method has been successfully applied in many wave equation environments for a variety of media from acoustic (shallow water equation) to electromagnetic waves in dispersive media. The method is easily motivated and formulated in Cartesian coordinates. The Higdon operator of order J describing the propagation of the transverse electric, ET, along the z-axis is written as follows: [Πj=1J(?t+vj?z)]ET=0. The parameters represent phase velocities of the wave. This reduces to the familiar 1 dimensional wave equation for J=1, in which the sign of the phase velocity indicates either a forward or backward traveling wave. Use of J=2 leads to the 2nd order phase velocity model previously reported by the author. Indeed, we have investigated the case for J=3 as well, but found the standard implementation when converted to a finite difference operator form extremely cumbersome. Increasing the order of J requires the method capture information more remote spatially and temporally from the boundary. This increases the potential effect of geometry variation as the information capture is projected deeper into the simulation. Fortunately, there is an alternative approach suggested by Givoli and Neta. They suggest recasting the Higdon operator in terms of auxiliary functions of arbitrarily high order. Converted to a finite difference representation, each order remains a first order difference method but couples adjacent orders of the auxiliary functions.
机译:在使用Higdon操作员时发现了多相速度非反射边界条件的基础。该方法的高阶实现提供了一种标准方法,其同样适用于多个信号,以及在宽频频谱上提供高质量的吸收边界。结果是源自仿真内部的散射输出波的近乎完美吸收。该方法已成功应用于许多来自声学(浅水方程)的各种介质的多波动方程环境中,以分散介质中的电磁波。该方法容易激励并配制在笛卡尔坐标中。命令J的HIGDON操作员描述横向电气等,沿z轴的传播如下写入:[Πj= 1j(Δt+vj≤z)] et = 0。参数表示波的相速度。这减少了j = 1的熟悉的1维波动方程,其中相速度的符号表示前向或向后行驶波。 J = 2的使用导致作者先前报告的第二阶阶段速度模型。实际上,我们也调查了J = 3的情况,但在转换为有限差分运算符的形式时,发现标准实现非常麻烦。增加j的顺序要求该方法从边界中捕获更多远程和时间更远程的信息。随着信息捕获更深的模拟,这增加了几何变化的潜在效果。幸运的是,Givoli和Neta建议了一种替代方法。他们建议在任意高阶的辅助功能方面重新定位Higdon运营商。转换为有限差分表示,每个订单仍然是一阶差分方法,但耦合辅助函数的相邻顺序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号