首页> 外文会议>IEEE International Conference on Plasma Sciences >Accurate, time-domain, electromagnetic simulation of embedded dielectric interfaces in Neptune
【24h】

Accurate, time-domain, electromagnetic simulation of embedded dielectric interfaces in Neptune

机译:Neptune中嵌入式介电接口的准确,时域电磁仿真

获取原文

摘要

Summary form only given. Dielectric materials play an important role in many classes of electromagnetic device, but present unique challenges to simulate accurately using time-domain Electromagnetic Particle-in-Cell (EM-PIC) codes. Results for previously published embedded boundary (or `cut-cell') algorithms typically do not exhibit true 2nd-order convergence with respect to grid cell size when curved interfaces must be resolved, particularly when the ratio of dielectric constants across an interface is large. We demonstrate here a new algorithm for time-domain simulation of structures that successfully addresses this challenge and provides accurate results in a broad range of geometries. In our method, we first derive a general, yet concise, tensor formula for the effective average permittivity inside a small region that spans a dielectric interface, such as a ceramic surface in vacuum. This formula is a simple function of the permittivity tensors each side of the interface and the vector locally normal to the interface. The effective permittivity is generally tensor-valued even when the dielectrics are isotropic, due to the orientation dependence imposed by the surface. By applying this formula cell by cell to an interface embedded in a fixed Cartesian grid, we derive a matrix representation for the material response that is more accurate than the stair-step representation. We demonstrated this method previously for frequency domain eigenmode solutions of Maxwell's equations 1. We present new results for a time-domain algorithm based on our embedded boundary dielectric model. Time domain solution using this method presents additional challenges when compared to frequency domain solutions. Firstly, the time-domain scheme must be stable and, secondly, the solution must be able to compute the inverse-permittivity to effectively update the electric field equations in the conventional EM-PIC model. We present our solution that satisfies these constraints, and that we have implemented for the GPU-based EM-PIC algorithm in Neptune.
机译:仅提供摘要表格。介电材料在许多类型的电磁设备中都扮演着重要角色,但是在使用时域电磁单元中的电磁粒子(EM-PIC)代码进行精确模拟方面提出了独特的挑战。当必须解决弯曲的界面时,尤其是当界面上的介电常数之比很大时,先前发布的嵌入式边界(或“切割单元”)算法的结果通常不会表现出真正的网格单元尺寸的二阶收敛。我们在这里演示了一种用于结构的时域仿真的新算法,该算法成功解决了这一难题,并在各种几何形状中提供了准确的结果。在我们的方法中,我们首先为在介电界面(例如真空中的陶瓷表面)的小区域内的有效平均介电常数推导一个通用而简洁的张量公式。该公式是介电常数张量在界面的每一侧和局部垂直于界面的向量的简单函数。由于介电常数是由表面决定的,因此即使介电常数是各向同性的,有效介电常数通常也是张量值。通过逐个单元地将此公式应用于嵌入固定笛卡尔网格中的接口,我们得出了材料响应的矩阵表示,该矩阵表示比阶梯表示更准确。我们先前在麦克斯韦方程组1的频域本征模式解中证明了该方法。我们基于嵌入式边界介电模型给出了时域算法的新结果。与频域解决方案相比,使用此方法的时域解决方案提出了其他挑战。首先,时域方案必须稳定,其次,解决方案必须能够计算反介电常数,以有效地更新常规EM-PIC模型中的电场方程。我们提出了满足这些约束的解决方案,并为海王星中基于GPU的EM-PIC算法实现了该解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号