首页> 外文会议>Annual Technical Conference and Exhibition >Microseismic-Derived Expected Ultimate Fracture Half-Height Above/Below Wellbore in Unconventional Stimulated Reservoir Volume in a Multi-Fractured Horizontal 10 Well Pad-Canadian Horn River Basin Case Study
【24h】

Microseismic-Derived Expected Ultimate Fracture Half-Height Above/Below Wellbore in Unconventional Stimulated Reservoir Volume in a Multi-Fractured Horizontal 10 Well Pad-Canadian Horn River Basin Case Study

机译:微震衍生的预期最终骨折半高于/低于井眼性的非传统刺激的储层在多裂缝水平10井垫 - 加拿大喇叭河流域研究中

获取原文

摘要

Over the past decade, microseismic (MS) monitoring has become the primary approach used to gain an in-situ understanding of the rock’s response during stimulation. Recently, the utilization of downhole monitoring of treatments has provided an opportunity to investigate ways by which these fractures develop by examining microseismic events recorded during stimulation. In the Horn River, geophysicists and engineers used microseismic field data and its interpretation to constrain reservoir models. Generally, it has been observed that fracture height, width and length vary from formation to formation. In the presence of uncertainty in reservoir models, input data is required for determining the best estimate of a value, and probabilistic methods are used. Risk analysis is a technique used to quantify the impact of uncertainties on output variables, and to determine a range of possible outcomes. In this paper we use Monte Carlo simulation and probability density functions (PDFs) that describe likely values of fracture half-height as an input parameter into reservoir models. PDFs and Cumulative Distribution Functions (CDFs) are used to provide realistic estimates of stimulation parameters, such as stimulated reservoir volume. Microseismic interpretation of events provides an upper bound value for fracture half-height in unconventional shale gas reservoirs. Its CDF for each well on a multi-fractured horizontal well pad provides a better understanding of what the ultimate fracture half-height could be after pressure depletion, and what the resulting implications for well spacing/ placement in pad design are. This facilitates a probabilistic approach to production forecasting and reserves estimation, and allows us to calculate a robust estimate range of estimated ultimate recovery (EUR) and recovery factor (RF). This approach differs from previous work that is based on strong collaborative work between geophysicists and engineers.
机译:在过去十年中,微震(MS)监测已成为用于在刺激期间对岩石的反应的原位了解的主要方法。最近,井下监测治疗的利用提供了一种研究这些裂缝通过检查刺激期间记录的微震事件而产生的方式的机会。在霍恩河中,地球物理学家和工程师使用微震现场数据及其解释来限制水库模型。通常,已经观察到裂缝高度,宽度和长度因形成形成而变化。在水库模型中存在不确定性的情况下,需要输入数据来确定值的最佳估计,并且使用概率方法。风险分析是一种用于量化不确定性对输出变量对输出变量的影响的技术,并确定一系列可能的结果。在本文中,我们使用Monte Carlo仿真和概率密度函数(PDF),其描述裂缝半高度的可能值作为进入储层模型。 PDF和累积分布函数(CDF)用于提供刺激参数的现实估计,例如受刺激的储存量。对事件的微震解释为非传统页岩气藏的裂缝半高提供了上限值。在多骨折水平井垫上的每个孔的CDF都可以更好地了解最终裂缝半高可能在压力耗尽后的内容,以及在垫设计中对井间距/放置的产生的影响是什么。这有助于生产预测和储备估计的概率方法,并允许我们计算估计的最终恢复(EUR)和恢复因子(RF)的稳健估计范围。这种方法与以前的工作不同,这是基于地球物理学家和工程师之间的强大协作工作。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号