首页> 外文会议>Annual Technical Conference and Exhibition >Predicting Gas Apparent Permeability of Shale Samples: A Novel Analytical Approach
【24h】

Predicting Gas Apparent Permeability of Shale Samples: A Novel Analytical Approach

机译:预测页岩样品的气体表观渗透性:一种新的分析方法

获取原文
获取外文期刊封面目录资料

摘要

Natural gas production of the United States from shale resources increased from 4 percent of total gas production in 2005 to 40 percent in 2012. These resources are different from conventional hydrocarbon resources due to the presence of extremely tight organic pores and low permeabilities. Presence of the nanopores may cause rarefaction effects, especially in laboratory conditions, which increases the effects of temperature and pressure on the apparent permeability of shale samples. In order to determine the permeability of these resources, laboratory measured apparent permeabilities, if conducted in low pressure and temperature, need to be extrapolated to reservoir conditions. In addition, gas flow in low pressures has important applications in predicting the gas production rates from unconventional reservoirs. Analytical methods for estimating gas apparent permeability (AP) of shale have been already proposed, e.g. Navier-Stokes and Advective-Diffusive Models (ADM); however, they are valid for a limited range of Knudsen numbers (Kn 0.5) and they have oversimplifying assumptions that overestimate the mass flux (or permeability) of nanopores. In addition, their results do not show the effect of temperature and gas molecular weight on AP. The presented work aims to develop an analytical model for gas apparent permeability of nanopores which is valid for Knudsen number up to unity. Solutions to the Regularized 13 (R13)-moment equations (extension of Grad’s 13-moments equations) provide a reliable tool to derive an analytical model for gas AP in nanotubes. The novelty of this work is that we provide an analytical model for gas AP which is valid for higher range of Knudsen numbers (by comparing with the kinetic data) in contrast to the previously developed analytical models. The new model is used to predict the impact of controlling parameters such as temperature, pressure, molecular weight, pore size, and Tangential Momentum Accommodation Coefficient (TMAC) on gas AP. It is shown that the gas molecular weight and temperature have significant effect on gas apparent permeability at low pressures. The effect of adsorption on AP of nanotubes is studied by employing the experimental Langmuir isotherms of different shale samples. The bundle of tubes method is used to compare R13 AP model with the experimental data of a Marcellus shale core plug. The model’s AP results for Nitrogen and Carbon Dioxide agree with the experimental measurements.
机译:来自页岩资源的美国自然气生产从2005年的总天然气产量的4%增加到2012年的40%。由于存在极其紧密的有机毛孔和低渗透性,这些资源与常规的碳氢化合物资源不同。纳米孔的存在可能导致稀疏效应,特别是在实验室条件下,这增加了温度和压力对页岩样品的表观渗透性的影响。为了确定这些资源的渗透率,实验室测量的明显渗透性,如果在低压和温度下进行,需要推断到储层条件下。此外,低压中的气流具有重要的应用,以预测来自非传统水库的气体生产率。已经提出了用于估计页岩的气体表观渗透率(AP)的分析方法,例如,已经提出了。 Navier-Stokes和平程 - 扩散模型(ADM);然而,它们对有限的knudsen数(kN 0.5)有效,并且它们具有过度简化的假设,这些假设高估了纳米孔的质量助熔剂(或渗透率)。此外,它们的结果没有显示出温度和气体分子量对AP的影响。本工作的旨在开发纳米孔的气体表观渗透性的分析模型,这对于统一的knudsen编号有效。正规化的13(R13) - 散发方程的解决方案(毕业的13矩等式的延伸)提供了一种可靠的工具,用于导出纳米管中的气体AP的分析模型。这项工作的新颖性是,我们为较高范围的knudsen数(通过与动力学数据进行比较)提供了一种有效的天然气AP的分析模型与先前显影的分析模型。新模型用于预测控制参数,如温度,压力,分子量,孔径和切向动量容纳系数(TMAC)在气体AP上的影响。结果表明,气体分子量和温度对低压下的气体表观渗透性具有显着影响。通过采用不同页岩样品的实验性Langmuir等温线来研究吸附对纳米管AP的影响。管束方法用于将R13 AP模型与Marcellus Shale芯插头的实验数据进行比较。该模型的AP结果氮和二氧化碳的结果与实验测量相提并论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号