首页> 外文会议>Annual Technical Conference and Exhibition >Dynamics of Fracture-matrix Coupling during Shale Gas Production: Pore Compressibility and Molecular Transport Effects
【24h】

Dynamics of Fracture-matrix Coupling during Shale Gas Production: Pore Compressibility and Molecular Transport Effects

机译:页岩气产量中骨折矩阵耦合的动态:孔隙压缩性和分子运输效应

获取原文

摘要

Much work has been done to demonstrate an economical impact of various fluid transport mechanisms on the long term behavior of shale gas production. These studies were elementary level and focused on identifying a dominant mechanism of production. They did not consider, however, the interaction of the fractures with the shale matrices in detail. In the near wellbore environment the fracture is the crucial component of transport, whereas the matrix is the place for storage. In this paper, using a new in-house reservoir flow simulator, we introduce the nature of this interaction and show that the transport in the tight matrix can be induced by carefully designing the well completions and by operating under the optimum production conditions. The simulator accounts for a hydraulic fracture coupled to shale matrix with an anistropic apparent permeability field, which is stress-sensitive and includes the effects of molecular transport phenomena. The fracture has a dynamic conductivity with a simple nonlinear deformation rule reflecting proppant embedment effect on the conductivity. Using a sector model, we predict short-term cumulative production trends. The results indicate that design of horizontal wells with multiple fractures should take into account the geomechanical and diffusional resistances associated with the gas transport in the matrices. Further, in-series nature of the production indicates that changes in fracture conductivity beyond its threshold value has negligible effect on the production trends. Therefore, production optimization efforts should instead focus to considerations to improve the flow rates in the matrix.
机译:已经完成了很多工作,以证明各种流体运输机制对页岩气产量的长期行为的经济影响。这些研究是基本的水平,并专注于确定主要的生产机制。然而,他们没有考虑裂缝与页岩矩阵的相互作用。在接近井筒环境中,裂缝是运输的关键组分,而基质是储存的地方。本文采用了新的内部水库流动模拟器,我们介绍了这种相互作用的性质,并表明,通过仔细设计井完井,通过在最佳的生产条件下运行来引起紧密矩阵的运输。模拟器占液压骨折与页岩基质的液压骨折,具有抗胁迫性表观渗透性场,其具有应力敏感,包括分子运输现象的影响。裂缝具有动态导电性,具有反映对电导率的支撑剂嵌入效应的简单非线性变形规则。使用扇区模型,我们预测短期累积生产趋势。结果表明,具有多种骨折的水平井的设计应考虑与矩阵中的气体输送相关的地质力学和扩散电阻。此外,生产的串联性质表明,裂缝电导率的变化超出其阈值的裂缝导电性对生产趋势具有可忽略不计的影响。因此,生产优化努力应专注于考虑提高矩阵中的流速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号