首页> 外文会议>Annual Technical Conference and Exhibition >Improving Performance of the Phase Equilibrium Calculations in the Surface Network Portion of an Integrated Reservoir Simulator/Surface Network Compositional Model
【24h】

Improving Performance of the Phase Equilibrium Calculations in the Surface Network Portion of an Integrated Reservoir Simulator/Surface Network Compositional Model

机译:提高集成储层模拟器/表面网络组成模型的表面网络部分中相平衡计算的性能

获取原文

摘要

A network model can be extremely sophisticated for some miscible gas injection simulations. Sometimes, miscible gas injection, gas cap reinjection, and gas lift within the network are required to be solved simultaneously with a reservoir model. The phase equilibrium calculation for a network can consume a significant proportion of the total central processing unit (CPU) time. Equation of state (EOS)-based phase equilibrium can be divided into single-phase and two-phase calculations. Most research focuses on reducing the number and computational cost of EOS equilibrium calculations for reservoir modeling. Improving the performance of the phase equilibrium calculation for network flow is rarely discussed in the literature. This paper describes methods applied to speed up the network calculations. The entire network is represented as a series of nodes and connections between nodes. It can be divided into several segments. If there is no introduction of other fluids from connecting segments, the overall composition is constant within a particular segment. Based on information from the previous phase status of each node or current phase status of up/downstream nodes, the nodes with a phase status change can be identified by regular single-phase stability analysis and flash calculation methods. Therefore, the segments can be divided into several single gas/oil and two-phase regions. For the nodes within two-phase regions, some correlation models can be applied to calculate equilibrium constant K-values for each component. Then, the flash calculation can be performed using the Rachford-Rice procedure. For single-phase regions, a phase envelope generation approach is used. A saturation pressure calculation is performed at a low value of pressure and temperature. Then, several points on the rest of the curve are extrapolated sequentially in a multistage extrapolation. If the temperature of a node is between two temperatures where an approximate value of the saturation pressure was identified, interpolation can be used to estimate the saturation pressure for this node.
机译:对于一些可混溶的气体注入模拟,网络模型可以非常复杂。有时,需要在网络中同时解决网络内的混溶式气体注入,气体盖再注,气体盖和燃气升降器。网络的相平衡计算可以消耗总中央处理单元(CPU)时间的大量比例。状态(EOS)的等式可以分为单相和两相计算。大多数研究侧重于降低储层建模的EOS平衡计算的数量和计算成本。在文献中很少讨论改善网络流量的相位平衡计算的性能。本文介绍了应用于加快网络计算的方法。整个网络被表示为节点之间的一系列节点和连接。它可以分为几个部分。如果没有从连接段引入其他流体,则整体组合物在特定区段内是恒定的。基于从每个节点或上/下行节点当前相位状态的前一阶段的状态信息,具有相状态改变的节点可以通过常规单相稳定性分析和闪蒸计算方法来鉴定。因此,该区段可以分为几个气体/油和两相区域。对于两相区域内的节点,可以应用一些相关模型来计算每个组件的平衡常数k值。然后,可以使用Rachford-Quick程序执行闪存计算。对于单相区域,使用相位包络产生方法。在低压和温度的低值下进行饱和压力计算。然后,在多级外推中依次向曲线上依次推断曲线上的几个点。如果节点的温度在识别饱和压力近似值的两个温度之间,则可以使用插值来估计该节点的饱和压力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号