首页> 外文会议>Annual Technical Conference and Exhibition >Experimental Study of Confinement Effect on Hydrocarbon Phase Behavior in Nano-Scale Porous Media Using Differential Scanning Calorimetry
【24h】

Experimental Study of Confinement Effect on Hydrocarbon Phase Behavior in Nano-Scale Porous Media Using Differential Scanning Calorimetry

机译:使用差示扫描量热法测定纳米多孔介质中烃相行为的预析效应的实验研究

获取原文
获取外文期刊封面目录资料

摘要

Phase behavior in shale remains a challenging problem in petroleum industry due to many complexities. One complexity arises from strong surface-fluid interactions in shale nano-scale pores. These interactions can lead to a heterogeneous distribution of molecules, which conventional bulk-phase thermodynamics fails to describe. Phase behavior in shale is altered from that characterized in PVT cells. The majority of current models are based on bulk-phase thermodynamics and efforts have been made using molecular simulation to gain insight into the nano-structure of confined fluids. However, to our best knowledge, the experimental data for hydrocarbon phase behavior in shale systems is severely absent. In this work, we investigated the phase change in nano-scale capillaries using experiments. The controlled pore glasses (CPGs) were applied to model the nano-porous structure of shale reservoirs. CPGs (pore diameters 4.3 and 38.1 nm) infiltrated with hydrocarbons (octane, decane, and the binary mixture) are subject to differential scanning calorimetric (DSC) analysis. It’s observed that the bubble point is affected by pore size dramatically: at 38.1 nm the confinement effect is insignificant, but at 4.3 nm two distinct bubble points appear with deviations as great as 15 K relative to the bulk, suggesting two populations of evaporating fluid. Based on experiments and simulations, a two-state model for the nanoconfined hydrocarbons is proposed. The bubble point is modeled using Peng-Robinson equation of state (PR-EOS) with the capillary pressure considered. The flash calculation is based on isofugacity and an interfacial tension model is accommodated. The modeling shows a general trend of increasing bubble point temperature with decreasing pore diameter, inconsistent with the experimental results. Besides, the “dual bubble points” behavior observed at 4.3 nm is not predicted by the model. This indicates the incapabilty of the bulk-phase thermodynamics in describing the behavior of nanoconfined fluids and the needs for molecule-scale simulation.
机译:由于许多复杂性,页岩中的阶段行为仍然是石油工业中的一个具有挑战性的问题。一种复杂性来自页岩纳米尺度孔隙的强表面流体相互作用。这些相互作用可能导致分子的异质分布,传统的散装热力学未能描述。页岩中的相位行为从特征在PVT细胞中改变。大多数目前的模型基于散装相热力学,并且已经使用分子模拟进行了努力,以深入了解狭窄的液体的纳米结构。然而,为了我们的最佳知识,SALE Systems中的烃相位行为的实验数据严重缺席。在这项工作中,我们研究了使用实验的纳米尺度毛细血管的相变。将受控的孔眼镜(CPG)应用于模拟页岩储存器的纳米多孔结构。用烃(辛烷值,癸烷和二元混合物)渗透渗透的CPG(孔径4.3和38.1nm)受差示扫描量热(DSC)分析。它观察到泡点受到孔径的影响:在38.1nm处,限制效果是微不足道的,但是在4.3nm的两个不同的泡沫点,相对于散装的偏差为15 k,表明两个蒸发流体的群体。基于实验和仿真,提出了一种用于纳米核烃的两种模型。使用状态(PR-EOS)的彭罗宾逊方程(PR-EOS)进行建模泡点,考虑。闪光灯计算基于Inofugacity,并且容纳界面张力模型。该模型显示了孔径降低,孔径降低,孔径减小,与实验结果不一致的一般趋势。此外,模型未预测观察到4.3nm的“双泡点”行为。这表明散装相热力学在描述纳米醌流体的行为以及分子级模拟的需要时能够陷入困境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号