首页> 外文会议>ASME/JSME/KSME Joint Fluids Engineering Conference >SIMULATION OF FORWARD OSMOSIS FLOW IN A TWO-DIMENSIONAL ASYMMETRIC MEMBRANE CHANNEL WITH DRAW CHANNEL CIRCULAR BAFFLE IMPLEMENTATION
【24h】

SIMULATION OF FORWARD OSMOSIS FLOW IN A TWO-DIMENSIONAL ASYMMETRIC MEMBRANE CHANNEL WITH DRAW CHANNEL CIRCULAR BAFFLE IMPLEMENTATION

机译:二维非对称膜孔实现的二维非对称膜通道中正向渗透流动的模拟

获取原文

摘要

Forward Osmosis (FO) driven asymmetric membrane filtration is a developing technology which shows promise for seawater desalination and wastewater treatment. Due to the fact that asymmetric membranes are widely used in conjunction with this technology, internal concentration polarization (ICP), a flow-entrainment effect occurring within such membranes, is a significant if not dominant source of overall osmotic pressure loss across the membrane. Accurate modeling of ICP effects is therefore very critical for accurate Computational Fluid Dynamic (CFD) modeling of asymmetric membranes. A related, dilutive effect known as external concentration polarization (ECP) also develops on both the rejection and draw sides of the membrane, further contributing to osmotic pressure loss. In order to increase the overall water flux, circular spacers can be implemented within the draw channel of FO cross-flow membrane exchange units to decrease the effects of ICP and draw ECP. The drawback of spacer inclusions is an increased pressure loss across the length of the feed channel. The system efficiency gained by the decrease in ECP must therefore be weighed against the energy cost of hydraulically making up lost channel pressure. To model the geometry of a FO cross-flow channel, the open source CFD package OpenFOAM is used. A compressible flow model with explicit boundary conditions is developed to simulate the flux transfer and ICP effects present within an asymmetric membrane when exposed to a NaCl solution. Results are validated by comparison with the numerical data generated by earlier models of asymmetric membranes implemented by other investigators using similar simulation conditions.
机译:正渗透(FO)驱动的不对称膜过滤技术是一项发展中的技术,对海水淡化和废水处理具有广阔的前景。由于不对称膜广泛地与该技术结合使用的事实,内部浓度极化(ICP)是这种膜内发生的引流效应,是跨膜总体渗透压损失的重要来源,即使不是主要来源。因此,ICP效应的精确建模对于非对称膜的精确计算流体动力学(CFD)建模至关重要。一种相关的稀释作用,即外部浓差极化(ECP),也在膜的截留和汲取侧均产生,进一步导致了渗透压的损失。为了增加总的水通量,可以在FO错流膜交换单元的抽吸通道内使用圆形垫片,以减少ICP和ECP抽吸的影响。隔离夹杂物的缺点是在整个进料通道的长度上增加了压力损失。因此,必须权衡因ECP降低而获得的系统效率与液压弥补通道损失压力的能源成本之间的权衡。为了对FO错流通道的几何结构建模,使用了开源CFD软件包OpenFOAM。建立具有明确边界条件的可压缩流动模型,以模拟当暴露于NaCl溶液中时,不对称膜内存在的通量传递和ICP效应。通过与其他研究者在类似的模拟条件下实施的较早模型的不对称膜产生的数值数据进行比较,对结果进行了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号