首页> 外文会议>Conference on active and passive smart structures and integrated systems >Planform, aero-structural and flight control optimization for tailless morphing aircraft
【24h】

Planform, aero-structural and flight control optimization for tailless morphing aircraft

机译:无尾变形飞机的平面,航空结构和飞行控制优化

获取原文

摘要

Tailless airplanes with swept wings rely on variations of the spanwise lift distribution to provide controllability in roll, pitch and yaw. Conventionally, this is achieved utilizing multiple control surfaces, such as elevons, on the wing trailing edge. As every flight condition requires different control moments (e.g. to provide pitching moment equilibrium), these surfaces are practically permanently displaced. Due to their nature, causing discontinuities, corners and gaps, they bear aerodynamic penalties, mostly in terms of shape drag. Shape adaptation, by means of chordwise morphing, has the potential of varying the lift of a wing section by deforming its profile in a way that minimizes the resulting drag. Furthermore, as the shape can be varied differently along the wingspan, the lift distribution can be tailored to each specific flight condition. For this reason, tailless aircraft appear as a prime choice to apply morphing techniques, as the attainable benefits are potentially significant. In this work, we present a methodology to determine the optimal planform, profile shape, and morphing structure for a tailless aircraft. The employed morphing concept is based on a distributed compliance structure, actuated by Macro Fiber Composite (MFC) piezoelectric elements. The multidisciplinary optimization is performed considering the static and dynamic aeroelastic behavior of the resulting structure. The goal is the maximization of the aerodynamic efficiency while guaranteeing the controllability of the plane, by means of morphing, in a set of flight conditions.
机译:机翼后掠的无尾飞机依靠翼展方向升力分布的变化来提供侧倾,俯仰和偏航的可控性。通常,这是通过在机翼后缘上使用多个控制表面(例如elevons)来实现的。由于每种飞行状况都需要不同的控制力矩(例如以提供俯仰力矩平衡),因此这些表面实际上是永久位移的。由于其性质,导致不连续,拐角和间隙,它们承受空气动力学的惩罚,主要是在形状阻力方面。借助于弦向变形的形状适应具有通过使翼部轮廓变形以使产生的阻力最小化的方式来改变翼部的升力的潜力。此外,由于形状可以沿翼展变化,因此升力分布可以针对每种特定的飞行条件进行调整。由于这个原因,无尾飞机似乎是应用变形技术的主要选择,因为可获得的好处是潜在的。在这项工作中,我们提出一种方法来确定无尾飞机的最佳平面形状,轮廓形状和变形结构。所采用的变形概念基于由宏纤维复合材料(MFC)压电元件驱动的分布式柔度结构。考虑到所得结构的静态和动态气动弹性行为,进行了多学科优化。目标是在一组飞行条件下,通过变形来确保飞机的可控制性,同时最大限度地提高空气动力效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号