首页> 外文会议>ASME Pressure Vessels and Piping conference >LATERAL INFLUENCE COEFFICIENTS FOR A THIN CONICAL SHELL FRUSTUM
【24h】

LATERAL INFLUENCE COEFFICIENTS FOR A THIN CONICAL SHELL FRUSTUM

机译:薄形圆锥形壳壳的横向影响系数

获取原文

摘要

Thin conical shell components are often used in vertical process vessels, bins, and water storage tanks. When exposed to the elements, such structures may be subjected to lateral wind forces and seismic accelerations. For calculations of lateral response of such structures with simplified models, in the form of vertical beams, lateral influence coefficients for thin conical frustum shells are useful. To compute lateral influence coefficient for conical frusta, asymmetric solutions of shell equations for cones are needed. The literature on asymmetric solutions for conical shells is sparse. Hoff derived equations suitable over a limited range of parameters for asymmetric response of conical shells and indicated possible solutions using Fourier and power series. In his discussion of Hoff s work, Pohle indicated that an asymptotic solution of the equations is useless because of its validity over an impractical range of parameters. Seide derived equations that removed the limitations of Hoff's equations. Wilson proposed solutions by separation of variables and power series. The slowly converging power series were summed using a computer for a conical panel under distributed loading. Chandrashekhar and Karekar solved the equations for a conical frustum under wind loading by expanding the solution in Fourier series in the circumferential direction, and applying finite differences in the meridional direction. The difference equations were solved using a computer. Derived here are closed-form expressions for thin conical shell frusta based on the membrane theory of shells. These influence coefficients are compared with finite element results for a conical shell, with specific geometry and material properties, for which wall bending is included.
机译:薄的圆锥形外壳组件通常用于立式工艺容器,垃圾箱和储水罐中。当暴露于这些元素时,此类结构可能会受到侧向风力和地震加速度的影响。为了用简化的模型以竖梁的形式计算这种结构的横向响应,圆锥形的平截头壳的横向影响系数是有用的。要计算圆锥形圆锥体的横向影响系数,需要锥壳方程的非对称解。关于圆锥壳的非对称解的文献很少。 Hoff导出的方程式适用于圆锥形壳的非对称响应的有限参数范围,并使用傅里叶和幂级数指出了可能的解决方案。 Pohle在对Hoff的工作进行讨论时指出,方程的渐近解是无用的,因为它在不切实际的参数范围内是有效的。赛德推导的方程式消除了霍夫方程式的局限性。威尔逊通过变量和幂级数的分离提出了解决方案。使用计算机在分布载荷下的圆锥形面板对缓慢收敛的幂级数进行求和。 Chandrashekhar和Karekar通过在圆周方向上以傅立叶级数展开解,并在子午方向上应用有限差分,解决了风荷载作用下圆锥形截头圆锥体的方程式。使用计算机求解差分方程。在此基于壳膜理论,得出了圆锥形薄壳视锥的闭合形式表达式。将这些影响系数与圆锥壳的有限元结果进行比较,圆锥壳具有特定的几何形状和材料属性,并包括壁弯。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号