首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >A SIMPLIFIED ANALYTICAL APPROACH FOR CALCULATING THE START-UP TIME OF INDUSTRIAL STEAM TURBINES FOR OPTIMAL AND FAST START-UP PROCEDURES
【24h】

A SIMPLIFIED ANALYTICAL APPROACH FOR CALCULATING THE START-UP TIME OF INDUSTRIAL STEAM TURBINES FOR OPTIMAL AND FAST START-UP PROCEDURES

机译:计算最佳和快速启动程序的工业蒸汽轮机启动时间的简化分析方法

获取原文

摘要

New flexible operational regimes with fast start-ups and fast-changing load cycles for steam turbines require calculation procedures for determining optimal start-up times in order not to exceed the limits of thermal stress for the steam turbine parts. This work presents a start-up time calculation for various kinds of industrial steam turbines. An analytical approach for estimating the optimal thermal load of a turbine from quasi-steady or steady condition is developed. The geometry of the respective turbine components, the changing of the steam parameters and heat transfer effects during the start-up procedure are taken into account while observing the respective material properties and stress limits. The temperature distributions of the respective turbine parts are calculated with a one-dimensional numerical algorithm of Fourier's heat conduction equation. Three-dimensional influences of the geometry and of the the heat flux are considered analytically by adjusting the numerical solutions of elementary bodies (e.g. one-dimensional plate). The start-up time calculation is performed in small time steps to guarantee the stability of the numerical solution. The unsteady stress analysis for the start-up procedure does not uniquely identify one critical component. The calculation must be repeated for each time step to identify the component which limits the start-up gradient. Other boundary conditions, such as restricted speed ranges of the rotor with minimum transients and time for synchronization with the electrical grid, are considered by the model too and can further limit the start-up gradient and lead to slower start-up procedures. The one-dimensional calculation models were verified with a three-dimensional FEA of the casing and a two axis symmetrical FEA of the rotor. The results for the temperature distribution are presented and compared to the one-dimensional results. The final result of the analytical approach for an optimized start-up time calculation is verified with two typical start-up calculations, one for a generator drive steam turbine and one for a mechanical-drive steam turbine.
机译:用于汽轮机的具有快速启动和快速变化的负载周期的新的灵活运行方式需要确定最佳启动时间的计算程序,以便不超过汽轮机零件的热应力极限。这项工作提出了各种工业蒸汽轮机的启动时间计算。开发了一种从准稳态或稳态条件估算涡轮机最佳热负荷的分析方法。在观察相应的材料特性和应力极限时,要考虑到各个涡轮机部件的几何形状,蒸汽参数的变化以及在启动过程中的传热效果。通过傅立叶热传导方程的一维数值算法来计算各个涡轮机部件的温度分布。通过调整基本体(例如一维板)的数值解,可以分析性地考虑几何形状和热通量的三维影响。启动时间计算以较小的时间步长执行,以确保数值解的稳定性。启动过程的非稳态应力分析不能唯一地识别一个关键组件。必须为每个时间步重复计算,以识别限制启动梯度的组件。模型还考虑了其​​他边界条件,例如转子具有最小瞬态的受限速度范围以及与电网同步的时间,这些条件可能会进一步限制启动梯度并导致启动过程变慢。通过壳体的三维有限元分析和转子的两轴对称有限元分析验证了一维计算模型。给出了温度分布的结果,并将其与一维结果进行了比较。通过两种典型的启动计算(一种用于发电机驱动的蒸汽轮机,一种用于机械驱动的蒸汽轮机)验证了用于优化启动时间计算的分析方法的最终结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号