首页> 外文会议>IEEE International Conference on Plasma Sciences >New Data For Modeling Hypersonic Re-entry Into Earth’s Atmosphere: Electron-impact Ionization Of Atomic Nitrogen
【24h】

New Data For Modeling Hypersonic Re-entry Into Earth’s Atmosphere: Electron-impact Ionization Of Atomic Nitrogen

机译:用于对地球大气层的超音速重新入口建模的新数据:原子氮的电子冲击电离

获取原文

摘要

Space vehicles returning to Earth from beyond orbit enter the atmosphere at hypersonic velocities (greater than Mach 5). The resulting shock front generates a high temperature reactive plasma around the vehicle (with temperatures greater than 10,000 K). This intense heat is transferred to the capsule by radiative and convective processes. Designing vehicles to withstand these conditions requires an accurate understanding of the underlying non-equilibrium high temperature chemistry. Nitrogen chemistry is particularly important given the abundance of nitrogen in the atmosphere. Line emission by atomic nitrogen is a major source of radiative heating during reentry. Our ability to accurately calculate this heating is hindered by uncertainties in the electron-impact ionization (EII) rate coefficient for atomic nitrogen. Here we present new EII calculations for atomic nitrogen. The atom is treated as a 49 level system, incorporating Rydberd levels up to n=20. Level-specific cross section are calculated using a combination of binary-encounter Bethe(BEB) and sealed-hydrogenic methods. These data have been convolved into level-specific rate coefficients and fit with the commonly-used Arrhenieu-Kooij formula for ease of use in hypersonic chemical models. These data can be readily sealed by the relevant atomic nitrogen partition function which varies in time and space around the reentry vehicle. Providing data up to n=20 also enables modelers to account for the density-dependent lowering of the continuum.
机译:从超越轨道返回地球的太空车辆在超音速(大于马赫5)处进入大气。得到的冲击前线在车辆周围产生高温反应等离子体(温度大于10,000 k)。这种强烈的热量通过辐射和对流过程转移到胶囊上。设计车辆以承受这些条件需要准确了解潜在的非平衡高温化学。鉴于大气中的氮气在大气中的丰度,氮化学尤其重要。原子氮的排放是再入中辐射加热的主要来源。我们准确计算该加热的能力受到原子氮的电子冲击电离(EII)速率系数的不确定性。在这里,我们提出了用于原子氮的新EII计算。原子被视为49个级别系统,将rydberd水平纳入n = 20。使用二进制遇到贝尔(BEB)和密封 - 氢化方法的组合来计算特异性特异性横截面。这些数据已被卷积到特定于级别的速率系数,并配合常用的Arrhenieu-Kooij公式,以便于高超声音化学模型使用。这些数据可以通过相关的原子氮分区函数容易地密封,其在再入式车辆周围的时间和空间变化。提供高达n = 20的数据还使建模者能够考虑连续内的密度依赖性降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号