首页> 外文会议>IEEE Aerospace Conference >Multidisciplinary system design optimization of on orbit satellite assembly architectures
【24h】

Multidisciplinary system design optimization of on orbit satellite assembly architectures

机译:在轨卫星装配结构的多学科系统设计优化

获取原文

摘要

Multidisciplinary system design optimization is performed to determine an optimal on-orbit satellite assembly mission architecture. Modern satellite assembly and launch systems rely on monolithic launches of complete satellites. There are many benefits, however, that may be attained through deviating from the status quo. Launching robotic, on-orbit assemble-able satellite modules increases the number of launches, but since each is launch is of a smaller satellite, the net launch costs can be decreased. Additionally, the price per pound of satellite launches can be decreased through ride-share programs with other missions. Spacecraft versatility is increased when not restricted to the selected launch vehicle payload weight capacity and geometric envelope by instead relying on reconfiguration once in orbit to achieve a final operational configuration. To facilitate the realization of these and other benefits, this paper addresses the architecture of an on-orbit assembly mission that requires an assembly satellite(s) to rendezvous with customer modules and assemble them into a complete satellite in the desired final orbit. A model of this assembly mission is created which calculates costs over the whole multi-assembly mission lifetime of one through five assembler satellites and the downtime which customer satellites experience while on orbit waiting for assembly to be complete. Five design variables are identified for this model, namely, the number of assembler satellites, the number of modules each assembler can manipulate at once, the starting location of each assembler, the autonomy level of the assemblers, and type of transfer orbits utilized by the assemblers. By varying these five aspects of the mission, an optimization is carried out which seeks to minimize total cost of the assembler mission and downtime of the customer satellites while holding to certain parameters and meeting constraints. This paper presents the problem, a simulation of the problem, the opt- mization methodology, and the results of that optimization.
机译:执行多学科系统设计优化,以确定最佳的在轨卫星装配任务架构。现代卫星组装和发射系统依赖于完整卫星的整体发射。但是,偏离现状可能会带来许多好处。发射可在轨道上组装的机器人自动卫星模块会增加发射次数,但是由于每次发射都是一颗较小的卫星,因此可以降低净发射成本。此外,可以通过与其他任务的共享计划降低每磅卫星发射的价格。当不限于选定的运载火箭有效载荷重量容量和几何包络时,航天器的多功能性得到提高,而改为依靠在轨一次重新配置以实现最终的运行配置。为了促进这些好处和其他好处的实现,本文讨论了在轨装配任务的体系结构,该任务要求装配卫星与客户模块会合,然后将它们组装到所需的最终轨道中,成为完整的卫星。创建了此组装任务的模型,该模型可计算一到五个组装卫星的整个多组装任务寿命中的成本,以及客户卫星在轨道上等待组装完成时所经历的停机时间。针对该模型,确定了五个设计变量,即,汇编程序卫星的数量,每个汇编程序可以立即操作的模块数,每个汇编程序的起始位置,汇编程序的自治级别以及该模型使用的传输轨道的类型。组装工。通过改变任务的这五个方面,进行了优化,以使组装任务的总成本和客户卫星的停机时间最小化,同时保持某些参数并满足约束条件。本文介绍了问题,问题的仿真,优化方法以及该优化的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号