首页> 外文会议>ASME international mechanical engineering congress and exposition >FULLY COUPLED SIMULATION OF OXYGEN AND HEAT DIFFUSION FOR (U, Pu)O_2 FUEL IN BOTH FBR AND LWR
【24h】

FULLY COUPLED SIMULATION OF OXYGEN AND HEAT DIFFUSION FOR (U, Pu)O_2 FUEL IN BOTH FBR AND LWR

机译:(U,Pu)O_2燃料在FBR和LWR中的氧和热扩散的完全耦合模拟

获取原文

摘要

Oxygen redistribution with the high temperature gradient is one of the important fuel performance concerns in fast reactor (FBR) and light water reactor (LWR) oxide (U, Pu)O_2 fuel during irradiation, and will affect nuclear fuel materials properties, power distribution and overall performance of the fuel. This paper focuses on the oxygen and heat diffusion within (U, Pu)O_2 fast reactor and light water reactor fuel. In this study, the correlations from the literature are used for density, thermal conductivity, specific heat, and oxygen to metal ratio redistribution. Three dimensional burnup dependent oxygen diffusion and heat diffusion models are fully-coupled in steady states and transients to account for the effects on each other. The models are implemented into COMSOL Multiphysics to perform this analysis. The simulation results show that the temperature profile change has relatively larger impact on oxygen/metal ratio distribution compared to oxygen/metal ratio distribution change's impact on temperature distribution. With regard to the oxygen/metal ratio's effect on temperature distribution, fast reactor and light water reactor show different trends. For fast reactor application, with the oxygen/metal ratio's increase on the outer surface, the fuel temperature decreases. However, for light water reactor application, with the oxygen/metal ratio increase on the outer surface, the fuel temperature increases, which is opposite to fast reactor application. For different oxygen/metal ratio boundary conditions, with the oxygen/metal ratio increase on the outer surface, the oxygen/metal ratio increases over the whole fuel. For the fast reactor application, the inner surface has the lowest oxygen/metal ratio, and the outer surface has the highest oxygen/metal ratio. However, this trend in light water reactor application is exactly opposite to fast reactor application. For the start-up transient scenario, the rapid changes in time-dependent temperature and oxygen/metal ratio distributions are observed, which are due to a rapid change in heat generation. Comparing fast reactor and light water reactor simulation results, we can observe that the temperature change is relatively more obvious in light water reactor than fast reactor.
机译:具有高温梯度的氧气再分配是快速反应器(FBR)和光水反应器(LWR)氧化物(LWR)氧化物(U,PU)O_2燃料在辐照过程中的重要燃料性能之一,并将影响核燃料材料特性,配电和电力分配燃料的整体性能。本文侧重于(U,PU)O_2快速反应器和轻水反应器燃料内的氧气和热扩散。在该研究中,来自文献的相关性用于密度,导热性,比热和氧气与金属比再分布。三维燃烧依赖性氧气扩散和热扩散模型在稳态状态下完全耦合,瞬态耦合,以占彼此的效果。该模型被实现为COMSOL Multiphysics以执行此分析。仿真结果表明,与氧/金属比分布变化对温度分布的影响相比,温度曲线变化对氧/金属比分布的影响相对较大。关于氧/金属比对温度分布的影响,快速反应器和轻水反应器显示出不同的趋势。对于快速反应器应用,随着外表面的​​氧气/金属比增加,燃料温度降低。然而,对于光水反应器应用,随着外表面的​​氧/金属比率增加,燃料温度升高,这与快速反应器应用相反。对于不同的氧/金属比边界条件,具有外表面上的氧/金属比率,氧/金属比在整个燃料上增加。对于快速反应器应用,内表面具有最低的氧/金属比,外表面具有最高的氧/金属比。然而,这种轻型水反应器应用中的这种趋势与快速反应器应用完全相反。对于启动瞬态场景,观察到时间依赖温度和氧气/金属比分布的快速变化,这是由于发热的快速变化。比较快速反应器和轻型水反应器仿真结果,我们可以观察到比快电反应器的光水反应器温度变化相对较为明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号