首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >ANALYSIS OF 3 DIMENSIONAL TURBINE FLOW BY USING MODE DECOMPOSITION TECHNIQUES
【24h】

ANALYSIS OF 3 DIMENSIONAL TURBINE FLOW BY USING MODE DECOMPOSITION TECHNIQUES

机译:运用模式分解技术分析三维涡轮流

获取原文

摘要

Today one of the most popular ways of lowering the fuel consumption and emissions of the Internal Combustion Engine (ICE) is by downsizing the engine. Downsizing means that the swept volumes of the cylinders are decreased; this lowers the frictional and thermal losses. By combining the downsizing with a well matched turbocharger system the performance is preserved while the advantages are retained. Since more and more of the development work is being performed by simulations there is an increasing need for more accurate methods. These methods are more complex and require more resources than the simpler, faster and more robust models used today. In this study Large Eddy Simulations (LES) of the unsteady flow in a radial turbine designed for a gasoline ICE has been performed and analyzed. The flow inside the turbine is highly 3 dimensional, pulsating and characterized by secondary flow motions and high curvatures. All these are reasons for which the method of choice should be LES. LES is able to resolve a large range of scales and capture the flow dynamics. The considered case concerns a non-pulsating flow condition but with engine like mass flow and temperature. Post-processing tools based on Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) are used to analyse the large amount of LES based flow data. The POD method is used to investigate the energy content of the dominant, large structures present in the flow. The DMD method on the other hand is used to reveal the flow structures responsible for specific frequencies found in the flow field. Preliminary data show a fair agreement between experimental data and LES results in terms of predicting the turbine performance parameters.
机译:如今,降低内燃机(ICE)的燃油消耗和排放的最流行的方法之一是减小发动机的尺寸。缩小尺寸意味着气缸的扫掠容积减小了;这降低了摩擦损失和热损失。通过将尺寸缩小与匹配良好的涡轮增压器系统相结合,可以在保持性能的同时保留优势。由于越来越多的开发工作是通过仿真进行的,因此越来越需要更准确的方法。与当今使用的更简单,更快和更强大的模型相比,这些方法更加复杂并且需要更多资源。在这项研究中,对用于汽油ICE的径向涡轮中的非定常流动进行了大涡模拟(LES)并进行了分析。涡轮内部的流动是高度3维的,具有脉动性,并具有二次流动和高曲率的特征。所有这些都是选择LES方法的原因。 LES能够解析大范围的水垢并捕获流动力学。所考虑的情况涉及非脉动的流动条件,但具有像质量流量和温度这样的发动机。基于正确正交分解(POD)和动态模式分解(DMD)的后处理工具用于分析大量基于LES的流数据。 POD方法用于研究流中主要的大型结构的能量含量。另一方面,DMD方法用于揭示造成流场中特定频率的流结构。初步数据显示,在预测涡轮机性能参数方面,实验数据与LES结果之间存在合理的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号