首页> 外文会议>International congress on advances in nuclear power plants >FUEL PERFORMANCE ASSESSMENT WHEN MODELING GAMMA HEATING DURING STEADY-STATE AND TRANSIENT SCENARIOS
【24h】

FUEL PERFORMANCE ASSESSMENT WHEN MODELING GAMMA HEATING DURING STEADY-STATE AND TRANSIENT SCENARIOS

机译:在稳态和瞬态情况下对伽玛加热进行建模时的燃油性能评估

获取原文

摘要

In today's light water reactors operating under steady-state conditions, it is understood that ~2.5-3.5% of the energy generated comes from gamma-ray heating. From a thermal-hydraulics viewpoint, the effects of gamma-ray heating are accounted for in the core coolant temperature rise. However, from a fuel performance standpoint, it is important to understand the heat generation within the fuel as it dictates the overall temperature distribution and thus safety margins. The U.S. Nuclear Regulatory Commission's (NRC) steady-state fuel performance code FRAPCON currently lacks the ability to model gamma-ray heating of the coolant, resulting in all of the energy from the user-supplied linear heat generation rate (LHGR) being deposited within the fuel and thermally transferred to the coolant. This work analyzes the effects on LWR steady-state fuel performance when accounting for gamma-ray heating with a modified version of FRAPCON-3.5. During a hypothetical loss of coolant accident (LOCA), the varying coolant conditions and fission product decay can result in different gamma-ray heating phenomena, namely where the energy is deposited and in what quantity. The NRC fuel performance code FRAPTRAN takes into account a 2% value of gamma-ray heating deposited into the coolant, based on the fuel rod's current LHGR. This work will include radiation transport calculations using Monte Carlo N-Particle (MCNP) and SCALE to determine where the gamma-ray energy is deposited with a 17×17 pressurized water reactor (PWR) fuel assembly and varying accident conditions, and a new gamma-ray heating model will be implemented into FRAPTRAN-1.5.
机译:在当今在稳态条件下运行的轻型水反应堆中,据了解〜2.5-3.5%所产生的能量来自伽马射线加热。从热液压的观点来看,γ射线加热的效果占核心冷却液温度升高。然而,从燃料性能的角度来看,重要的是要了解燃料内的热量,因为它决定了整体温度分布,因此是安全余量。美国核监管委员会(NRC)稳态燃料绩效代码FRAPCON缺乏对冷却剂的伽马射线加热模拟伽马射线加热的能力,从而导致来自用户提供的线性发热速率(LHGR)的所有能量燃料和热转移到冷却剂中。这项工作分析了对Gamma射线加热时的Rwame-3.5修改版本的伽马射线加热时对LWR稳态燃料性能的影响。在假设的冷却剂事故(基因座)的丧失期间,改变的冷却剂条件和裂变产品衰减可以导致不同的伽马射线加热现象,即在沉积能量和何种数量的地方。基于燃料棒的电流LHGR,NRC燃料绩效代码Fraptran考虑了沉积在冷却剂中的伽马射线加热的2%值。该工作将包括使用蒙特卡洛N-粒子(MCNP)和刻度来确定伽马射线能量沉积在17×17加压水反应器(PWR)燃料组件和变化的事故条件下沉积伽马射线能量的辐射运输计算,以及新的γ -Ray加热模型将实施到Fraptran-1.5中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号