首页> 外文会议>ASME/BATH symposium on fluid power and motion control >ANALYSIS AND OPTIMIZATION OF AN ELECTROHYDRAULIC POWER PACK FOR USE IN A FULLY-ACTIVE VEHICLE SUSPENSION THROUGH THE USE OF COMPUTATIONAL FLUID DYNAMICS
【24h】

ANALYSIS AND OPTIMIZATION OF AN ELECTROHYDRAULIC POWER PACK FOR USE IN A FULLY-ACTIVE VEHICLE SUSPENSION THROUGH THE USE OF COMPUTATIONAL FLUID DYNAMICS

机译:通过计算流体动力学在全主动式汽车悬架中使用的电动液压动力总成的分析和优化

获取原文

摘要

Shock absorbers are essential to vehicle comfort and handling. Most shock absorbers use passive or "semi-active" valves to produce reactive force with limited ride benefits while dissipating hydraulic power as heat. Fully-active suspensions can fundamentally eliminate the discomfort of bumps and provide superior handling and safety. Existing active suspensions consume large amounts of power and are expensive and unwieldy. If these challenges are addressed, fully-active suspensions could revolutionize the ride control industry. A compact and full-active suspension system, GenShock, is being developed by Levant Power. The patented system relies upon an electrohydraulic power pack coupled with a gerotor motor/pump. Energy consumption is minimized by regenerative harvesting from suspension dynamics. The system is based around a proprietary electrohydraulic motor/pump mechanism that can both semi-actively damp body and wheel motion while recovering energy, and actuate to drive the wheel and chassis. This article describes the use of computational fluid dynamics (CFD) in the development and optimization of hydraulic components in GenShock. The CFD software PumpLinx enabled the complex non-linear GenShock system to be simulated within 5% of experimental tests, and enabled a threefold increase in system efficiency. Parametric simulations predict the torque, power, leakage behavior, and hydrodynamics of the system including effects of aeration and cavitation. Detailed analysis and correlations between experimental data and simulations are presented.
机译:减震器对于车辆的舒适性和操控性至关重要。大多数减震器使用被动阀或“半主动”阀来产生反作用力,并具有有限的行驶效益,同时将液压动力作为热量散发。全主动式悬架可以从根本上消除颠簸的不适感,并提供出色的操控性和安全性。现有的主动悬架消耗大量动力,并且昂贵且笨重。如果解决了这些挑战,那么主动悬挂系统将彻底改变行驶控制行业。 Levant Power正在开发一种紧凑的全主动式悬架系统GenShock。获得专利的系统依赖于与齿轮马达/泵耦合的电动液压动力单元。通过悬挂动态产生的能量来最大程度地减少能源消耗。该系统基于专有的电动液压马达/泵机构,该机构既可以半主动抑制车身和车轮的运动,又可以回收能量,并且可以驱动车轮和底盘。本文介绍了在GenShock中开发和优化液压组件中使用计算流体动力学(CFD)的方法。 CFD软件PumpLinx使复杂的非线性GenShock系统能够在5%的实验测试范围内进行仿真,并使系统效率提高了三倍。参数仿真可预测系统的扭矩,功率,泄漏行为和流体力学,包括曝气和气蚀的影响。给出了详细的分析以及实验数据与仿真之间的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号