首页> 外文会议>IEEE Aerospace Conference >Risk-aware Mission Design for In situ Asteroid Exploration under Uncertainty
【24h】

Risk-aware Mission Design for In situ Asteroid Exploration under Uncertainty

机译:风险意识到在不确定性下原位小行星勘探的特派团设计

获取原文

摘要

In-situ robotic asteroid exploration is integral to current and future space programs for sustainable human exploration and resupply in deep space, deflection of potentially hazardous objects, and study of the early solar system formulation. Meanwhile, dynamical environments around asteroids are highly perturbed and uncertain, and pose challenges for spacecraft to safely navigate around them. The dynamics are influenced by a variety of sources of uncertainty, such as asteroid properties, exogenous disturbances, and errors associated with operations. These uncertainties need to be properly quantified and taken into account of the mission design processes. On the other hand, characteristics of such uncertainties are not usually given or fixed but rather dependent on the mission architecture and operational scenarios. To aid in the decision-making processes with trade-offs between the mission feasibility and uncertainties, mission designers need to quantify the feasibilities of a number of architectures for a range of possible combinations of uncertainty characteristics. To explore the solution space efficiently and reliably, this paper presents a systematic approach that leverages techniques from the fields of stochastic optimal control and convex optimization. Formulated as a convex optimization problem, the solution method enables us to solve many number (as many as ~ 105) of stochastic optimal control problems without initial guesses. The proposed approach is applied to the design of asteroid global-mapping campaigns, which demonstrates the effectiveness and validity of our approach. The result reveals important trade-off relationships between the mission feasibility and assumed uncertainty characteristics in the context of asteroid global mapping. While the convex formulation involves a dynamical approximation, the validity of the convex-programming-based solutions is confirmed through nonlinear Monte-Carlo simulations under the original dynamics.
机译:原位机器人小行星勘探是对可持续人类勘探的当前和未来空间计划的一体化,并在深空中,潜在危险物体的偏转和早期太阳系制定的研究。与此同时,小行星周围的动态环境非常扰动和不确定,并且对航天器安全地造成挑战,以安全地浏览它们。动态受到各种不确定性来源的影响,例如小行星属性,外源性干扰以及与操作相关的误差。这些不确定性需要适当量化,并考虑到任务设计过程。另一方面,这种不确定性的特征通常不会给出或固定,而是依赖于使命架构和操作场景。为了帮助在任务可行性和不确定性之间进行权衡的决策过程,使命设计人员需要量化许多架构的可行性,以实现一系列可能的不确定性特征组合。为了有效可靠地探索解决方案空间,本文提出了一种系统的方法,利用随机最佳控制和凸优化领域的技术。制定为凸优化问题,解决方案方法使我们能够解决许多数字(多达10 5 )随机最佳控制问题而没有初始猜测。该拟议的方法适用于小行星全球映射运动的设计,这证明了我们方法的有效性和有效性。结果揭示了在小行星全球映射方面的任务可行性和假设不确定性特征之间的重要权衡关系。虽然凸形制剂涉及动态近似,但是通过原始动态下的非线性Monte-Carlo模拟确认了基于凸编程的解决方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号