首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >RESPONSE OF NON-AXISYMMETRIC PREMIXED, SWIRL FLAMES TO HELICAL DISTURBANCES
【24h】

RESPONSE OF NON-AXISYMMETRIC PREMIXED, SWIRL FLAMES TO HELICAL DISTURBANCES

机译:非轴对称的旋流火焰对螺旋形扰动的响应

获取原文

摘要

Flow oscillations associated with hydrodynamic instabilities comprise a key element of the feedback loop during self-excited combustion driven oscillations. This work is motivated in particular by the question of how to scale thermoacoustic stability results from single nozzle or sector combustors to full scale systems. Specifically, this paper considers the response of non-axisymmetric flames to helical flow disturbances of the form û_i' ∝ exp(imθ) where m denotes the helical mode number. This work closely follows prior studies of the response of axisymmetric flames to helical disturbances. In that case, helical modes induce strong flame wrinkling, but only the axisymmetric, m=0 mode, leads to fluctuations in overall flame surface area and, therefore, heat release. All other helical modes induce local area/heat release fluctuations with azimuthal phase variations that cancel each other out when integrated over all azimuthal angles. However, in the case of mean flame non-axisymmetries, the azimuthal deviations on the mean flame surface inhibit such cancellations and the asymmetric helical modes (m ≠ 0) cause a finite global flame response. In this paper, a theoretical framework for non-axisymmetric flames is developed and used to illustrate how the flame shape influences which helical modes lead to net flame surface area fluctuations. Example results are presented which illustrate the contributions made by these asymmetric helical modes to the global flame response and how this varies with different control parameters such as degree of asymmetry in the mean flame shape or Strouhal number. Thus, significantly different sensitivities may be observed in single and multi-nozzle flames in otherwise identical hardware in flows with strong helical disturbances, if there are significant deviations in time averaged flame shape between the two, particularly if one of the cases is nearly axisymmetric.
机译:在自激燃烧驱动的振荡过程中,与流体动力学不稳定性相关的流动振荡是反馈回路的关键要素。这项工作尤其受到以下问题的推动:如何将热声稳定性从单喷嘴或扇形燃烧室扩展到全尺寸系统。具体来说,本文考虑非轴对称火焰对形式为û_i'∝ exp(imθ)的螺旋流扰动的响应,其中m表示螺旋模数。这项工作紧跟先前关于轴对称火焰对螺旋扰动的响应的研究。在这种情况下,螺旋模式会引起强烈的火焰起皱,但只有轴对称的m = 0模式会导致整个火焰表面积发生波动,并因此释放热量。所有其他螺旋模式会引起局部区域/放热波动,且方位角相位变化会在所有方位角上积分时相互抵消。但是,在平均火焰非轴对称的情况下,平均火焰表面上的方位角偏差会抑制这种抵消,并且非对称螺旋模式(m≠0)会导致有限的整体火焰响应。在本文中,建立了非轴对称火焰的理论框架,并用于说明火焰形状如何影响哪些螺旋模式导致火焰净表面积波动。给出了示例结果,这些示例结果说明了这些不对称螺旋模式对整体火焰响应的贡献,以及它如何随不同的控制参数(例如平均火焰形状或Strouhal数的不对称度)而变化。因此,如果两者之间的时间平均火焰形状存在明显偏差,尤其是在其中一种情况几乎是轴对称的情况下,则在具有强烈螺旋干扰的流动中,在其他硬件相同的硬件中,在单喷嘴和多喷嘴火焰中可能会观察到明显不同的灵敏度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号