首页> 外文会议>AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition >Dynamics of Axisymmetric Premixed, Swirling Flames subjected to Helical Disturbances
【24h】

Dynamics of Axisymmetric Premixed, Swirling Flames subjected to Helical Disturbances

机译:轴对称预混合旋流火焰的螺旋扰动动力学

获取原文

摘要

Hydrodynamic instabilities and acoustic velocity fluctuations form an integral component of the velocity coupling mechanism of the combustion instability process. This paper extends a prior study on the response of flames to non-axisy mmetric disturbances. There are at least two important sources of non-axisymmetry in transversely excited flames. First, transverse acoustic fluctuations are intrinsically non-axisymmetric. Second, non-axisymmetric helical modes are dominant downstream of the potential core in non-swirling jets and are often dominant in swirling jets. This paper describes an analysis of the response of swirling premixed flames to helical disturbances, i.e., where the flow fluctuations have an azimuthal dependence of the form u'_i ∞ exp(imθ) and m denotes the helical mode number. Results are derived for local flame wrinkling and heat release fluctuations, showing that they exhibit very different sensitivities to helical mode number, m, swirl strength, and dimensionless frequency. In addition, the degree of axisymmetry of the time averaged flame plays a crucial role in these interactions, particularly in how flow disturbances, u'_i, translate into heat release oscillations. Thus, the helical mode, m, with the dominant contribution to local flame wrinkling, m=m_0, and spatially integrated heat release fluctuations, m=m_1, is generally different.For example, the helical mode, m, leading to the largest amplitude of local flame wrinkling and heat release in a solid body swirl flow field is given by m_0σ= U_(t,f)/ U_c - 1, where σ is the ratio of swirl angular rotation rate to forcing frequency,U_(t,f) is the component of mean tangential velocity along the forcing direction and U_c is the phase speed of the convecting vortex. In contrast, only the axisymmetric m=m_1=0 mode leads to global surface area fluctuations in axisymmetric flames, which are also completely insensitive to swirl number. Since the maximum amplitude of local flame wrinkling is, in general, excited by helical modes with m≠0, care must be taken in interpreting the significance of large scale, helical flame flapping, as often is captured from planar experimental data or visualized in computations.
机译:水动力不稳定性和声速波动形成了燃烧不稳定性过程的速度耦合机制的组成部分。本文扩展了对火焰对非轴系mmetric扰动的响应的先前研究。横向激发火焰中至少有两个重要的非轴对称性来源。首先,横向声学波动本质上是非轴对称的。其次,非轴对称螺旋模态在非旋流射流中位于潜在核的下游,并且在旋流射流中通常占主导。本文描述了旋转预混火焰对螺旋扰动的响应的分析,即流量波动具有u'_i∞exp(imθ)形式的方位角依赖性,而m表示螺旋模数。得出了局部起皱和放热波动的结果,表明它们对螺旋模数,m,旋流强度和无量纲频率表现出截然不同的敏感性。此外,时间平均火焰的轴对称度在这些相互作用中起着至关重要的作用,特别是在流动扰动u'_i如何转化为放热振荡方面。因此,对局部火焰起皱起主要作用的螺旋模m通常为m = m_0,而空间积分热量释放波动m = m_1通常是不同的。例如,螺旋模m导致最大振幅m_0σ= U_(t,f)/ U_c-1给出固体旋流场中局部火焰起皱和放热的关系式,其中σ是旋流角旋转速率与强迫频率的比值U_(t,f)是沿强迫方向的平均切线速度的分量,U_c是对流涡旋的相速度。相反,只有轴对称的m = m_1 = 0模式会导致轴对称火焰中的整体表面积波动,这对旋流数也完全不敏感。通常,由于局部火焰起皱的最大幅度是由m≠0的螺旋模激发的,因此在解释大型螺旋形火焰扑动的意义时要格外小心,因为通常是从平面实验数据中捕获或在计算中可视化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号