首页> 外文会议>ASME international mechanical engineering congress and exposition >DESIGN FOR INTERNAL RESONANCES IN NONLINEAR TRANSVERSE VIBRATIONS OF HYPERELASTIC PLATES
【24h】

DESIGN FOR INTERNAL RESONANCES IN NONLINEAR TRANSVERSE VIBRATIONS OF HYPERELASTIC PLATES

机译:超弹性板的非线性横向振动的内部共振设计

获取原文

摘要

Nonlinear phenomenon such as internal resonance have significant potential applications in Micro Electro Mechanical Systems (MEMS) for increasing the sensitivity of biological and chemical sensors and signal processing elements in circuits. While several theoretical systems are known which exhibit 1:2 or 1:3 internal resonances, designing systems that have the desired properties required for internal resonance as well as are physically realizable as MEMS devices is a significant challenge. Traditionally, the design process for obtaining resonant structures exhibiting an internal resonance has relied heavily on the designer's prior knowledge and experience. However, with advances in computing power and topology optimization techniques, it should be possible to synthesize structures with the required nonlinear properties (such as having modal frequencies in certain ratios) computationally. In this work, plate structures which are candidates for internal resonances are obtained using a Finite Element Method (FEM) formulation implemented in Matlab to iteratively modify a base structure to get its first two natural frequencies close to the desired ratio (1:2 or 1:3). Once a structure with desired topology is achieved, the linear mode shapes of the structure can be extracted from the finite element analysis, and a more complete Lagrangian formulation of the Hyperelastic structure can be used to develop a nonlinear two-mode model of the structure. The reduced-order model is expected to capture the appropriate resonant dynamics associated with modal interactions between the two modes, and the nonlinear response can be obtained by application of perturbation methods such as averaging on the two-mode model.
机译:诸如内部共振之类的非线性现象在微机电系统(MEMS)中具有重要的潜在应用,可用于提高电路中生物和化学传感器以及信号处理元件的灵敏度。虽然已知几种具有1:2或1:3内部共振的理论系统,但是设计具有内部共振所需的所需特性以及作为MEMS器件可物理实现的系统是一项重大挑战。传统上,用于获得表现出内部共振的共振结构的设计过程在很大程度上依赖于设计人员的先验知识和经验。但是,随着计算能力和拓扑优化技术的进步,应该可以通过计算来合成具有所需非线性特性(例如具有一定比例的模态频率)的结构。在这项工作中,使用在Matlab中实施的有限元方法(FEM)公式迭代地修改基础结构,使其前两个固有频率接近所需比例(1:2或1),从而获得了内部共振候选板结构。 :3)。一旦获得具有所需拓扑的结构,就可以从有限元分析中提取出该结构的线性模式形状,并且可以使用超弹性结构的更完整的拉格朗日公式来开发该结构的非线性双模式模型。降阶模型有望捕获与两个模态之间的模态相互作用相关的适当的共振动力学,并且可以通过应用诸如在两个模态模型上求平均的摄动方法来获得非线性响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号