首页> 外文会议>ASME Pressure Vessels and Piping conference >A COMPARISON OF FINITE ELEMENT COHESIVE-ZONE MODELLING WITH THE PROCESS-ZONE APPROACH FOR THE PREDICTION OF DELAYED HYDRIDE CRACKING
【24h】

A COMPARISON OF FINITE ELEMENT COHESIVE-ZONE MODELLING WITH THE PROCESS-ZONE APPROACH FOR THE PREDICTION OF DELAYED HYDRIDE CRACKING

机译:有限元粘滞带模拟与预测延迟氢化物开裂的过程区方法的比较

获取原文

摘要

Zirconium alloys, as used in water-cooled nuclear reactors, are susceptible to a time-dependent damage mechanism known as Delayed Hydride Cracking, or DHC. Corrosion of the zirconium alloy in the presence of water generates hydrogen that subsequently diffuses through the metallic structure towards stress concentrating features such as notches or cracks. Canadian standard CSA N285.8-10 uses a process-zone modelling approach to define a threshold stress level beyond which DHC is predicted to occur. The process-zone analysis to calculate the threshold stress level generally proceeds by representing the process-zone as a crack, the length of which is determined by the superposition of stress intensity factors obtained from handbook solutions or cracked-body finite element models. Process-zone models are a subset of the more general class of cohesive-zone models and cohesive elements are available in a number of standard finite element codes. Cohesive elements can be used to simulate the process-zone response, or indeed more complex cohesive behaviour. In this paper, the stress and displacement results from finite element based cohesive-zone modelling of a sharp crack and blunt notches of various root radii are compared with analytical process-zone solutions. The cohesive-zone results are also compared with the process-zone formulation used in CSA N285.8-10. The results show that finite element based cohesive-zone analysis can be used to replicate the process-zone results. The key benefit of finite element based cohesive-zone modelling is that it provides a framework for investigating the DHC characteristics of arbitrary hydride distributions, using readily available techniques.
机译:在水冷核反应堆中使用的锆合金容易受到随时间变化的损害机制的影响,这种机制被称为延迟氢化物裂化(DHC)。在水的存在下,锆合金的腐蚀会产生氢,氢随后会通过金属结构向应力集中特征(如缺口或裂纹)扩散。加拿大标准CSA N285.8-10使用过程区建模方法来定义阈值应力水平,预计将超过此阈值发生DHC。通常通过将过程区域表示为裂纹来进行过程区域分析,以计算阈值应力水平,该过程区域的长度由从手册解或裂纹体有限元模型获得的应力强度因子的叠加确定。过程区模型是更通用的内聚区模型类别的子集,内聚元素可以在许多标准的有限元代码中使用。内聚元素可用于模拟过程区域响应,或者更复杂的内聚行为。在本文中,将基于有限元内聚区模型的各种根部半径的尖锐裂纹和钝槽的应力和位移与分析过程区解进行了比较。粘合区结果也与CSA N285.8-10中使用的过程区配方进行了比较。结果表明,基于有限元的内聚区分析可用于复制过程区结果。基于有限元的内聚区建模的主要好处是,它提供了一个框架,可使用现成的技术来研究任意氢化物分布的DHC特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号