首页> 外文会议>USNC-URSI Radio Science Meeting;AP-S Symposium >An FMM-FFT accelerated integral equation solver for characterizing electromagnetic wave propagation in mine tunnels and galleries loaded with conductors
【24h】

An FMM-FFT accelerated integral equation solver for characterizing electromagnetic wave propagation in mine tunnels and galleries loaded with conductors

机译:用于表征导线矿井隧道电磁波传播的FMM-FFT加速整体式求解器

获取原文

摘要

Reliable wireless communication and tracking systems in underground mines are of paramount importance to increase miners' productivity while monitoring the environmental conditions and increasing the effectiveness of rescue operations. Key to the design and optimization of such systems are electromagnetic (EM) simulation tools capable of analyzing wave propagation in electromagnetically large mine tunnels and galleries loaded with conducting cables (power, telephone) and mining equipment (trolleys, rails, carts), and potentially partially obstructed by debris from a cave-in. Current tools for simulating EM propagation in mine environments leverage (multi-) modal decompositions (Emslie et. al., IEEE Trans. Antennas Propag., 23, 192–205, 1975; Sun and Akyildiz, IEEE Trans. Commun., 58, 1758–1768, 2010), ray-tracing techniques (Zhang, IEEE Tran. Vehic. Tech., 5, 1308–1314, 2003), or full wave methods. Modal approaches and ray-tracing techniques cannot accurately account for the presence of conductors, intricate details of transmitters/receivers, wall roughness, or unstructured debris from a cave-in. Classical full-wave methods do not suffer from such restrictions. However, they require prohibitively large computational resources when applied to the analysis of electromagnetically large tunnels loaded with conductors. Recently, an efficient hybrid method of moment and transmission line solver has been developed to analyze the EM wave propagation inside tunnels loaded with conductors (Brocker et. al., in Proc IEEE AP-S Symp, pp.1,2, 2012). However, the applicability of the solver is limited to the characterization of EM wave propagation at medium frequency band.
机译:地下矿山可靠的无线通信和跟踪系统至关重要,以提高矿工的生产力,同时监测环境条件并提高救援行动的有效性。这些系统的设计和优化的关键是电磁(EM)模拟工具,其能够分析电磁大型矿山隧道和装载电缆(电源,电话)和采矿设备(手推车,轨道,推车)和可能由塌陷碎片部分阻挡。用于模拟矿井环境中的EM传播的电流工具利用(多级)模态分解(EMSLIE等。,IEEE Trans。天线传播。,23,192-205,1975; Sun和Akyildiz,IEEE Trans。Communce。,58, 1758-1768,2010),射线跟踪技术(张,IEEE Tran。车辆。技术。,5,1308-1314,2003)或全波方法。模态方法和射线跟踪技术不能准确地考虑导体的存在,从塌陷中复杂的变送器/接收器,墙壁粗糙度或非结构化碎片的细节。经典的全波方法不会遭受这种限制。然而,它们在应用于装载导线的电磁大隧道的分析时,它们需要大量的计算资源。最近,已经开发了一种高效的混合方法和传输线求解器的旋转方法,分析了装有导体的隧道内的EM波传播(BROCKER等。,在PROC IEEE AP-S Symp,PP.1,2,2012中)。然而,求解器的适用性限于中频带中的EM波传播的表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号