首页> 外文会议>IEEE Energy Conversion Congress and Exposition >Rapid Push Pull Resonant Charger for High Power, High Voltage Applications Using Low Input Voltage
【24h】

Rapid Push Pull Resonant Charger for High Power, High Voltage Applications Using Low Input Voltage

机译:快速推动拉动谐振充电器,用于高功率,高电压应用使用低输入电压

获取原文

摘要

This paper presents a novel approach to rapid, high power, high voltage capacitor charger that is fed from low voltage input source and achieves high efficiency in small dimensions. The charger is based on parallel resonant push-pull topology. Output current of the proposed charger is shown to be approximately constant regardless of the rising output voltage. The charged capacitor is fed by a linearly rising power profile. The behavior differs from series resonant and flyback charger topologies where output capacitor is fed by linearly decaying and constant power, respectively. The parallel resonant topology enables charging from a low voltage source using a relatively low transformer winding ratio, in one stage. The proposed charger is controlled by the digital controller dsPIC33FJ16GS502 (Microchip USA). Zero current soft switching is performed using a varying switching frequency based on continuous controller calculations during charging. Feasibility of the proposed charger and its control were tested experimentally on a prototype charger, which was operated at 0.7kW from a low input voltage source of 28V. The charger was loaded by an output capacitor of 250nF, which was charged at the rate of 600 charging cycles per second to 3kV. Good agreement was found between the proposed analytical model and experimental results.
机译:本文提出了一种新的快速,高功率高压电容充电器的方法,该电压充电器从低压输入源供给,并以小尺寸实现高效率。充电器基于并联谐振推拉拓扑。无论上升的输出电压如何,所提出的充电器的输出电流都明显是恒定的。带电电容器由线性上升的功率分布供给。该行为与串联谐振和反激式充电器拓扑的不同,其中输出电容分别通过线性衰减和恒定功率馈送。并联谐振拓扑使得在一个阶段中使用相对较低的变压器绕组比从低电压源充电。所提出的充电器由数字控制器DSPIC33FJ16GS502(Microchip USA)控制。使用基于充电期间的连续控制器计算使用不同的开关频率来执行零电流软切换。在实验上测试所提出的充电器的可行性及其对照在原型充电器上测试,从28V的低输入电压源0.7kW运行。充电器由250nf的输出电容装载,该电容以每秒600个充电周期的速率充电至3kV。在拟议的分析模型和实验结果之间发现了良好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号