首页> 外文会议>International Symposium on Computer, Consumer and Control >Effects of direct optical ablation and sequent thermal ablation on an ultrafast pulsed laser microprocessing
【24h】

Effects of direct optical ablation and sequent thermal ablation on an ultrafast pulsed laser microprocessing

机译:直接光学消融和顺序热消融对超快脉冲激光微处理的影响

获取原文

摘要

An ultrafast pulsed laser processing for materials can obtain submicometer- to nanometer-sized parts or patterns because the heat cannot diffuse in time during the ultrafast pulsed duration and the multiphoton absorption leads to a threshold of ablation. An ultra-fast pulsed laser is first absorbed due to optical penetration. Therefore, the direct optical penetration or coulomb explosion leads to the initial optical ablation during ultrafast pulsed duration without thermal diffusion. After the direct optical ablation and sequent thermal diffusion, the thermal ablation occurs for the residual heat of an ultrafast pulsed laser maintaining the material temperature above the evaporated temperature. This study uses Laplace transform method to show the effects of optical ablation and thermal ablation, respectively. The results reveal that both optical and thermal ablations follow Beer's exponential law as experimental observations in the published papers. The optical ablation triggered by the only energy source of directly incident ultrafast pulsed laser governs the main ablation depth, and then thermal ablation induced by the residual heat after the optical ablation gives the enhancement of the ablation depth. The optical ablation is preferred for obtaining the better processing quality of an ultrafast pulsed laser due to no thermal damage of thermal diffusion-induced ablation. The ablated depth per pulse versus laser fluence predicted by this work agrees with that measured by the published paper. This study will provide the closed-form solution to elucidate direct optical ablation and sequent thermal ablation for the ultra-fast pulsed laser photo-thermal processing.
机译:为材料的超快脉冲激光加工可以得到submicometer-到纳米尺寸的部件或图案,因为热量可以在时间上的超快脉冲持续时间和多光子吸收导致烧蚀的阈值时不扩散。超快脉冲激光的吸收,首先由于光学穿透。因此,在超高速没有热扩散脉冲的持续时间的直接光穿透或库仑爆炸导致初始光烧蚀。的直接光烧蚀和相继式热扩散后,热消融发生用于超快脉冲激光保持高于蒸发温度的材料温度的余热。本研究采用拉普拉斯变换的方法分别示出光学消融和热消融的效果,。结果表明,光学和热消融跟随比尔指数规律在发表论文的实验观察。由直接入射超快脉冲激光的唯一能量源触发光学消融支配主消融深度,然后在光学消融后诱导的余热热消融给出了烧蚀深度的增强。光消融优选用于获得超快脉冲激光的更好的加工质量由于热扩散引起的消融的无热损伤。每个脉冲的烧蚀深度对激光通量通过该工作预测与通过发表的论文测量一致。该研究将提供封闭形式解来阐明直接光学消融和相继式热消融的超快脉冲激光光热处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号