首页> 外文会议>ASME international mechanical engineering congress and exposition >FINITE ELEMENT-BASED BROWNIAN DYNAMICS SIMULATION OF NANO-FIBER SUSPENSIONS IN NANO-COMPOSITES PROCESSING USING MONTE-CARLO METHOD
【24h】

FINITE ELEMENT-BASED BROWNIAN DYNAMICS SIMULATION OF NANO-FIBER SUSPENSIONS IN NANO-COMPOSITES PROCESSING USING MONTE-CARLO METHOD

机译:基于蒙特卡罗方法的纳米复合材料纳米纤维悬浮液的有限元布朗动力学模拟

获取原文

摘要

This paper presents a computational approach for simulating the motion of nano-fibers during polymer nano-composites processing. A finite element-based Brownian dynamics simulation is proposed to solve the motion of nano-fibers suspended within a viscous fluid. In this paper, a Langevin approach is used to account for both hydrodynamic and Brownian effects. We develop a stand-alone Finite Element Method (FEM) for modeling the hydrodynamic effect exerted from the surrounding fluid. The Brownian effects are regarded as the random thermal disturbing forces/torques, which are modeled as a Gaussian process. Our approach seeks solutions using an iterative Newton-Raphson method for the fiber's linear and angular velocities such that the net forces and torques, i.e. the combination of hydro-dynamic and Brownian effects, acting on the fiber are zero. In the Newton-Raphson method, the analytical Jacobian matrix is derived from our finite element model. Fiber motion is then computed with a Runge-Kutta method to update the fiber positions and orientations as a function of time. Instead of re-meshing the fluid domain as fiber moves, we applied the transformed essential boundary conditions on the boundary of fluid domain, so the tedious process of updating stiffness matrix of finite element model is avoided. Since Brownian disturbance from the fluid molecules is a stochastic process, Monte-Carlo simulation is used to evaluate the motion of a great many fibers associated with different random Brownian forces and torques. The final fiber motion is obtained by averaging a numerous fiber motion paths. Examples of fiber motions with various Peclet numbers are presented in this paper. The proposed computational methodology will be used to gain insight on how to control fiber orientations in micro-and nano- polymer composite suspensions in order to obtain the best engineered products.
机译:本文提出了一种计算方法,用于模拟聚合物纳米复合材料加工过程中纳米纤维的运动。为了解决悬浮在粘性流体中的纳米纤维的运动,提出了一种基于有限元的布朗动力学模拟。在本文中,Langevin方法用于说明流体动力效应和布朗效应。我们开发了一种独立的有限元方法(FEM),用于对从周围流体施加的流体动力效应进行建模。布朗效应被认为是随机的热干扰力/扭矩,其被建模为高斯过程。我们的方法寻求使用迭代牛顿-拉夫森(Newton-Raphson)方法求解光纤的线速度和角速度,以使作用在光纤上的净力和转矩,即流体动力和布朗效应的组合为零。在牛顿-拉夫森方法中,解析雅可比矩阵是从我们的有限元模型中得出的。然后使用Runge-Kutta方法计算纤维运动,以根据时间更新纤维位置和方向。我们没有在纤维运动的同时重新划分流体域的网格,而是在流体域的边界上应用了转换后的基本边界条件,从而避免了更新有限元模型刚度矩阵的繁琐过程。由于来自流体分子的布朗干扰是一个随机过程,因此使用蒙特卡洛模拟来评估与不同随机布朗力和转矩相关的许多纤维的运动。最终的纤维运动是通过平均许多纤维运动路径而获得的。本文介绍了具有各种Peclet数的纤维运动的示例。拟议的计算方法将用于深入了解如何控制微和纳米聚合物复合材料悬浮液中的纤维取向,从而获得最佳的工程产品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号