首页> 外文会议>IEEE Global Communications Conference >Rethinking Maximum Flow Problem and Beamforming Design Through Brain-inspired Geometric Lens
【24h】

Rethinking Maximum Flow Problem and Beamforming Design Through Brain-inspired Geometric Lens

机译:通过脑机启发的几何镜头重新思考最大流量问题和波束成形设计

获取原文

摘要

Increasing data rate in wireless networks (e.g., vehicular ones) can be accomplished through a two-pronged approach, which are 1) increasing the network flow rate through parallel independent routes and 2) increasing the user's link rate through beamforming codebook adaptation. Mobile relays (e.g., mobile road side units) are utilized to enable achieving these goals given their flexible positioning. First at the network level, we model regularized Laplacian matrices, which are symmetric positive definite (SPD) ones representing relay-dependent network graphs, as points over Riemannian manifolds. Inspired by the geometric classification of different tasks in the brain network, Riemannian metrics, such as Log-Euclidean metric (LEM), are utilized to choose relay positions that result in maximum LEM. Simulation results show that the proposed LEM-based relay positioning algorithm enables parallel routes and achieves maximum network flow rate, as opposed to other conventional metrics (e.g., algebraic connectivity). Second at the link level, we propose an unsupervised geometric machine learning (G-ML) approach to learn the unique channel characteristics of each relay-dependent environment. Given that spatially-correlated fading channels have SPD covariance matrices, they can be represented over Riemannian manifolds. Consequently, LEM-based Riemannian metric is utilized for unsupervised learning of the environment channels, and a matched beamforming codebook is constructed accordingly. Simulation results show that the proposed G-ML model increases the link rate after a short training period.
机译:通过双管化方法增加无线网络中的数据速率(例如,车辆载波)可以通过平行独立路由和2)通过波束成形码本适应增加用户的链路速率来提高网络流量的增加。移动中继(例如,移动路侧单元)用于鉴于它们的灵活定位来实现这些目标。首先在网络级别,我们模拟正则化拉普拉斯矩阵,其是代表继电器依赖网络图的对称正定(SPD),如riemannian歧管上的点。灵感来自大脑网络中不同任务的几何分类,利用黎曼指标,例如Log-euclidean公制(LEM)来选择导致最大LEM的中继位置。仿真结果表明,所提出的基于LEM的继电器定位算法使得并行路线能够实现最大的网络流量,而不是其他传统度量(例如,代数连接)。其次在链路层面,我们提出了一种无监督的几何机器学习(G-ML)方法来学习每个继电器依赖环境的唯一信道特征。鉴于空间相关的渐变频道具有SPD协方差矩阵,它们可以在riemannian歧管上表示。因此,基于LEM的Riemannian度量用于对环境信道的无监督学习,并且相应地构造匹配的波束形成码。仿真结果表明,建议的G-ML模型在短暂培训期后增加了链路速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号