首页> 外文会议>Progress in electromagnetics research symposium >Electromagnetic Structures and Inertias of Particles including the Higgs Boson
【24h】

Electromagnetic Structures and Inertias of Particles including the Higgs Boson

机译:包括希格斯玻色子的粒子的电磁结构和惯性

获取原文

摘要

The underlying thesis is that all particles and fields are electromagnetic and all particles have defined shapes and density profiles in the three spatial dimensions and in the two dimensions of time and frequency. Electromagnetic string structures suitable for photons and the main sub-atomic particles have previously been presented. The strings are high density currents and line charges, collectively named 'substance' ψ, in loops and toroids and these make up the central core of a particle. By 'electromagnetic coupling' a particle core induces a 'potential region', which is a 'dark matter atmosphere' surrounding the core. The atmosphere is a finite region, and thus a finite energy region, where the 'potential' Φ_1 from the core 'substance' ψ dominates but induces an atmosphere of low density secondary substance ψ_2 with potential Φ2. In this way 'electromagnetic coupling' with finite energy constraints establishes the shapes and profiles of the sub-atomic particles. These particle models have electromagnetic frequency spectra with discrete lines. The total energy E of the spectral lines and any coupling between them is the gravitational mass m of a particle according to E = mc~2. With an additional assumption the EM model explains the high inertial mass of any particle having a dense core. The additional assumption is that EM coupling between the core and the atmosphere has a small definite time delay. Thus inertia of particles comes from 'time delayed EM coupling'. It follows that diffuse energy with low density, such as for dark matter, fields, photons and neutrinos, should have low inertial mass relative to gravitational mass. Young's double slit diffraction of electrons is explained by the substance cores of the electrons passing through either slit, but with the EM wave potential atmosphere passing through both slits to create a 'potential diffraction pattern' that steers the electron cores probabilistically into the observed diffraction patterns. The effective frequency for the diffraction of electrons is the electron (string) frequency Doppler shifted by the electron stream velocity. The lifetime of the Higgs Boson is predicted to be short ~1.6 × 10~(-22) sec. The Higgs particle is found to have a dominant line spectrum with a line width corresponding to a Q ~380. The peak of the spectrum is ~6 × 10~(21) Hz, which is at least an order of magnitude greater than for Gamma rays. The Higgs particle is thus a rather unstable quantum and its EM strings may not be easily represented or measured. A layered and twisting EM string arrow model is considered as a possible structure for neutrinos.
机译:基本的论点是,所有粒子和场都是电磁的,并且所有粒子在时间和频率的三个空间维度以及两个维度上都有定义的形状和密度分布。先前已经提出了适用于光子和主要亚原子粒子的电磁弦结构。弦是高密度的电流和线电荷,在环路和环形线圈中统称为“物质”ψ,它们构成了粒子的中心核。通过“电磁耦合”,粒子核心感应出一个“潜在区域”,这是围绕核心的“暗物质气氛”。大气是一个有限区域,因此是一个有限的能量区域,其中核心“物质”ψ的“势”Φ_1占主导,但诱发了一个具有电势Φ2的低密度二次物质ψ_2的大气。这样,具有有限能量约束的“电磁耦合”建立了亚原子粒子的形状和轮廓。这些粒子模型具有带有离散线的电磁频谱。谱线及其之间的任何耦合的总能量E为根据E = mc〜2的粒子的重力质量m。在附加假设下,EM模型解释了具有致密核的任何粒子的高惯性质量。另一个假设是,岩心与大气层之间的电磁耦合具有较小的确定时间延迟。因此,粒子的惯性来自“延时电磁耦合”。因此,相对于引力质量,低密度的扩散能量(例如暗物质,场,光子和中微子)的惯性质量应较低。杨氏电子的双狭缝衍射是通过穿过任一狭缝的电子的物质核来解释的,但通过两个狭缝均通过了EM波势的气氛,从而形成了一个“潜在的衍射图”,从而将电子核概率地引导到观察到的衍射图上。电子衍射的有效频率是通过电子流速度移动的电子(弦)频率多普勒频率。希格斯玻色子的寿命预计约为〜1.6×10〜(-22)sec。发现希格斯粒子具有占优势的线谱,其线宽对应于Q〜380。光谱的峰值为〜6×10〜(21)Hz,至少比伽马射线大一个数量级。因此,希格斯粒子是一个相当不稳定的量子,它的EM弦可能不容易表示或测量。分层和扭曲的EM弦箭模型被认为是中微子的可能结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号