首页> 外文会议>International Joint Conference on Neural Networks >Artificial neural network performance degradation under network damage: Stuck-at faults
【24h】

Artificial neural network performance degradation under network damage: Stuck-at faults

机译:网络损伤下的人工神经网络性能下降:陷入困境

获取原文

摘要

Biological neural networks are spectacularly more energy efficient than currently available man-made, transistor-based information processing units. Additionally, biological systems do not suffer catastrophic failures when subjected to physical damage, but experience proportional performance degradation. Hardware neural networks promise great advantages in information processing tasks that are inherently parallel or are deployed in an environment where the processing unit might be susceptible to physical damage. This paper, intended for hardware neural network applications, presents analysis of performance degradation of various architectures of artificial neural networks when subjected to ‘stuck-at-0’ and ‘stuck-at-1’ faults. This study aims to determine if a fixed number of neurons should be kept in a single or multiple hidden layers. Faults are administered to input and hidden layer(s) and analysis of unoptimized and optimized, feedforward and recurrent networks, trained with uncorrelated and correlated data sets is conducted. A comparison of networks with single, dual, triple, and quadruple hidden layers is quantified. The main finding is that ‘stuck-at-0’ faults administered to input layer result in least performance degradation in networks with multiple hidden layers. However, for ‘stuck-at-0’ faults occurring to cells in hidden layer(s), the architecture that sustains the least damage is that of a single hidden layer. When ‘stuck-at-1’ errors are applied to either input or hidden layers, the network(s) that offer the most resilience are those with multiple hidden layers. The study suggests that hardware neural network architecture should be chosen based on the most likely type of damage that the system may be subjected to, namely damage to sensors or the neural network itself.
机译:生物神经网络比目前可用的基于人工的晶体管的信息处理单元更高的节能更高。此外,在受到物理损伤时,生物系统不会遭受灾难性失败,但经历比例性能下降。硬件神经网络在信息处理任务中承诺很大的优点,其固有并行或部署在处理单元可能易受物理损坏的环境中。本文旨在用于硬件神经网络应用,在经受“陷入困境-0”和“困扰-1”故障时,呈现人工神经网络各种架构的性能下降分析。本研究旨在确定固定数量的神经元是否应保持在单个或多个隐藏层中。对输入和隐藏层进行故障,并进行未筛选的未优化和优化的,前馈和复发网络的分析,具有不相关和相关数据集的培训。量化了单个,双,三倍和四倍隐藏层的网络比较。主要发现是“卡住-T-0”故障管理到输入层,导致具有多个隐藏图层的网络中的性能降低。然而,对于隐藏层中的细胞发生的“陷入困境-0”故障,维持最少损坏的架构是单个隐藏层的架构。当“陷入困境-1”错误应用于输入或隐藏层时,提供最大弹性的网络是具有多个隐藏层的网络。该研究表明,应基于系统可能对传感器或神经网络本身损坏的最可能类型的损坏来选择硬件神经网络架构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号