首页> 外文会议>IEEE International Conference on Healthcare Informatics >Machine Learning and Deep Learning Approaches to Quantify Respiratory Distress Severity and Predict Critical Alarms
【24h】

Machine Learning and Deep Learning Approaches to Quantify Respiratory Distress Severity and Predict Critical Alarms

机译:机器学习和深度学习方法,以量化呼吸窘迫严重程度并预测危重警报

获取原文

摘要

Respiratory distress (RD) is often the premonition and accompanying symptom of many critical conditions that may eventually lead to mortality among patients admitted in intensive care units (ICUs). The contemporary monitoring and alarm systems often fail to give timely and assertive alert of dangerously soaring RD, thus obscuring accurate prognosis. These systems do not capture the information provided by multiple parameters, which is important to predict and track patient health deterioration due to RD over time. Also, the repeated occurrence of false alarms in present systems leads to alarm fatigue. Our method addresses these issues by quantifying RD condition with a ‘Severity Index (SI)’ based on trend and value of respiratory rate (RR) and peripheral capillary oxygen saturation (SpO2) for 24 hours segment in a streaming monitor arrangement. We work on 912 records extracted from MIMIC-III Clinical and Waveform Database. We mapped our task as a classification problem and explored multiple machine learning and deep learning models in order to propose the best solution. The trend and value features were used for classification to train logistic regression, decision tree, support vector machine and multi-layer perceptron for quantification of RD severity on segment. We also use convolutional neural network (CNN) and long-short term memory (LSTM) for segment classification since they have capability to capture the temporal pattern of RD. All the models gave AUC (Area Under Curve for Receiver Operating Characteristic (ROC)) either close to or above 0.90 for classification task. We later used these models for raising clinical alarm for RD. We conclude that CNN model is marginally better than other models if we aggregate performance on all metrics. We can trigger an alarm based on SI of RD as evaluated by our CNN model instead of contemporary threshold based alarms of RR and SpO2. This RD alarm gives sensitivity and specificity of 86% and 85% respectively and achieves an average lead time of 5.5 hours without contributing to alarm fatigue. The dataset, code, trained models and the GUI are available at https://github.com/rohit-pardasani/RDQuantization.
机译:呼吸窘迫(RD)往往是许多关键条件的预发起和随附的症状,最终可能最终导致重症监护单位(ICU)承认的患者的死亡率。当代监测和报警系统经常无法及时和自信地提醒危险的飙升RD,从而遮挡准确的预后。这些系统不会捕获多个参数提供的信息,这对于预测和跟踪RD随时间而导致的患者健康恶化非常重要。此外,目前系统中的重复发生错误警报导致报警疲劳。我们的方法通过使用“严重性指数(SI)”量化呼吸率(RR)和外周毛细管氧饱和度(SPO)来解决这些问题 2 )在流监测器安排中进行24小时段。我们在从MIMIC-III临床和波形数据库中提取的912条记录工作。我们将任务映射为分类问题,并探索了多台机器学习和深度学习模型,以提出最佳解决方案。趋势和价值特征用于分类以列入训练逻辑回归,决策树,支持向量机和多层Perceptron,用于定量段的RD严重程度。我们还使用卷积神经网络(CNN)和长期内存(LSTM)进行段分类,因为它们具有捕获RD的时间模式的能力。所有型号都在分类任务的接近或高于0.90的接收器操作特征(ROC)下的曲线下的区域。我们后来使用这些模型来提高RD的临床警报。我们得出结论,如果我们在所有指标中汇总表现,CNN模型比其他模型更好。我们可以根据我们的CNN模型而不是基于RR和SPO的当代阈值的警报来触发基于RD的SI的警报 2 。该RD报警分别为86%和85%的敏感性和特异性提供了86%和85%,并且在不贡献警报疲劳的情况下实现5.5小时的平均延长时间。数据集,代码,培训的模型和GUI可在HTTPS://github.com/rohit-pardasani/rdquantizing提供。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号