首页> 外文会议>IEEE International Symposium on Circuits and Systems >Live demonstration: Multiple-timescale plasticity in a neuromorphic system
【24h】

Live demonstration: Multiple-timescale plasticity in a neuromorphic system

机译:现场演示:神经形态系统中的多时间尺度可塑性

获取原文

摘要

I. Demo Description Traditionally, neuromorphic ICs have integrated only reduced subsets of the rich repertoire of plasticity seen in biological preparations [1], [2]. The focus with respect to long term plasticity has been mostly on Spike-Time-Dependent Plasticity (STDP) [1]. Several ICs have also implemented forms of presynaptic short term dynamics, which filter synaptic pulse input, but have no influence on other timescales of plasticity. Here, we demonstrate an IC that implements short-term-, long-term-, and metaplasticity in an integrated way following [3], where these three different timescales interact to form the overall weight at the synapse. Fig. 1 shows an example presynaptic pattern with depression and the membrane trace as input for learning [3]. The resulting analog weight state shows the influence of presynaptic depression in the step increases, comparable to [1]. Also, different settings for the learning threshold exhibit a bias towards weight increase/decrease on a metaplastic (i.e. slow) timescale similar to [2]. The overall setup features several Maple-ICs of each 16 neurons and 512 of the above synapses, interlinked via FPGA-based pulse transmission. This allows network sizes of up to 200 neurons, sufficient to demonstrate the necessity for this type of learning for a range of computational neuroscience models.
机译:I.演示说明传统上,神经形态IC仅整合了生物制剂中[1],[2]中丰富的可塑性丰富集的减少的子集。关于长期可塑性的焦点主要集中在与时间相关的可塑性(STDP)[1]上。一些集成电路还实现了突触前短期动力学的形式,该形式可以过滤突触脉冲输入,但对其他可塑性时间尺度没有影响。在这里,我们展示了一种集成电路,该集成电路按照[3]的集成方式实现了短期,长期和可塑性,其中这三个不同的时标相互作用形成了突触的总权重。图1显示了一个示例性的突触前模式,其中抑郁症和膜痕迹作为学习的输入[3]。所得的模拟体重状态显示出突触前抑郁在步长增加时的影响,与[1]相当。同样,类似于[2],学习阈值的不同设置在化生(即缓慢)时间尺度上表现出对体重增加/减少的偏见。整个设置具有每个16个神经元的几个Maple-IC和上述突触的512个,通过基于FPGA的脉冲传输相互连接。这允许多达200个神经元的网络大小,足以证明对于一系列计算神经科学模型进行此类学习的必要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号