首页> 外文会议>Air and Waste Management Association annual conference and exhibition >Structure Sensitivities of SAPO Zeolites on Catalytic Oxidation of Nitric Oxide
【24h】

Structure Sensitivities of SAPO Zeolites on Catalytic Oxidation of Nitric Oxide

机译:SAPO沸石对一氧化氮催化氧化的结构敏感性

获取原文

摘要

NO_x emissions from increasing coal consumption, associated with respiratory diseases, ozone depletion, photochemical smog, acid rain, and ambient particulate matter, has triggered global interest in exploring new catalysts and technologies for NO_x abatement. Catalytic NO oxidation combined with subsequent liquid absorption is a possible alternative to current selective catalytic and non-catalytic reduction. Compared to existing abatement strategies, NO oxidation operates at a lower temperature (< 100 °C) and can potentially be used for simultaneous control of multiple pollutants. In this paper, we systematically investigate porous zeolites including SAPO-11 and SAPO-34 as NO oxidation catalysts, building upon previous work that shows activated carbon to be effective for this reaction. Our bench-scale reactor uses 2.4×10~4 mL·g~(-1)·h~(-1), 0.25 g of packed zeolite catalyst, 25 °C, 50 °C, and inlet gases of 380 ppm_v NO, 10 vol% O_2, and balance N_2. At 25 °C, higher conversion efficiency (39.78 ± 0.48%) was achieved on SAPO-34 than on SAPO-11 (7.85 ± 0.33%), and the corresponding conversion efficiency at 50°C for SAPO-34 is 16.2±0.7%, higher than 3.9±0.4%. Transient kinetic experiments combined with tests investigating the impacts of pre-sorbed NO_X species show that the NO oxidation mechanism over zeolite catalysts is consistent with the carbon-catalyzed process. Conversion efficiency of the catalyst is controlled by the catalyst's pore structure, including cavity size and channels. The pore width must be large enough to adsorb NO and formed intermediates, but narrow enough to provide the necessary energy benefits associated with increased adsorption in micropores.
机译:煤炭消耗量增加引起的NO_x排放与呼吸系统疾病,臭氧消耗,光化学烟雾,酸雨和环境颗粒物有关,这引发了全球对开发新的减少NO_x的催化剂和技术的兴趣。催化NO氧化与随后的液体吸收相结合是当前选择性催化还原和非催化还原的一种可能替代方法。与现有的减排策略相比,NO氧化可在较低的温度(<100°C)下运行,并且有可能用于多种污染物的同时控制。在本文中,我们在以前的工作表明活性炭对该反应有效的基础上,系统地研究了多孔沸石(包括SAPO-11和SAPO-34)作为NO氧化催化剂。我们的台式反应器使用2.4×10〜4 mL·g〜(-1)·h〜(-1),0.25 g填充沸石催化剂,25°C,50°C和380 ppm_v NO的进口气体, O_2的体积百分比为10,而N_2的平衡。在25°C下,SAPO-34的转化效率(39.78±0.48%)比SAPO-11(7.85±0.33%)更高,而在50°C下,SAPO-34的转化效率为16.2±0.7% ,高于3.9±0.4%。瞬态动力学实验与研究预吸附NO_X物质影响的试验相结合表明,沸石催化剂上的NO氧化机理与碳催化过程一致。催化剂的转化效率由催化剂的孔结构(包括空腔尺寸和通道)控制。孔的宽度必须足够大,以吸附NO和形成的中间体,但必须足够窄,以提供与增加微孔吸附有关的必要能量效益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号